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PREFACE

The Air Force SINCGARS VHF-FM radio is a frequency-hopping

anti-jam radio which utilizes an electrically short antenna to

minimize aerodynamic drag on airborne platforms. The development of

optimally efficient, electronically tuneable antennas for this radio

is of interest. Although the antenna groundplane is

platform-dependent, it is usually small compared to an rf wavelength.

A circular groundplane provides a standardized groundplane geometry

with which to model and evaluate candidate antennas. Accordingly, a

VHF antenna range with an 8 ft. diameter circular groundplane has been

constructed at The MITRE Corporation to evaluate candidate antennas.

The electrical properties of a monopole element at the center of a

circular groundplane of finite .adius are of interest to this program

for (a) qualifying the antenna range; (b) establishing antenna

standards with which to measure test antennas; and (c) modeling

candidate antennas. 0Lc survey of the literature revealed that

although this antenna has the simplest geometry of any monopole

antenna, its properties are neither well understood nor standardized,

particularly for grgundplane radii which are small or comparable to a

wavelength. Th -present paper attempts to address this deficiency. .
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SECTION 1

INTRODUCTION

Monopole antennas are commonly employed in airborne and ground-based

communication systems at a wide range of frequencies. The electrical

properties of such antennas are dependent upon the geometry of both the

monopole element and the groundplane. Typically, the monopole element may

be electrically-short (length much less than a quarterwave) or

near-resonant (length approximately a quarterwave) and may be thin (length

to radius ratio much greater than 104) or relatively thick (length to

radius ratio of 101 to 104). In addition, the groundplane dimensions may

vary from a fraction of a wavelength to many wavelengths. Therefore it is

desirable to know how the input impedance and radiation pattern of the

antenna change as the dimensions of the monopole element and the

groundplane vary. The directional gain on or near the radio horizon (the

groundplane is assumed to be horizontal) is of particular interest since

the maximum operational range of a communications system often depends upon

the directivity on the radio horizon.

This study is restricted to a monopole geometry consisting of a

vertical cylindrical element at the center of a perfectly conducting,

infinitely thin, circular groundplane in free space. This geometry is of

interest because its radiation pattern is uniform in the azimuthal

direction and because its electrical characteristics are a function of

primarily only three parameters, namely, the element length, the element

radius, and the groundplane radius, when each is normalized to the

excitation wavelength. For these reasons this geometry is conducive to

analysis, experimental verification, and standardization.
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A typical feed for the monopole antenna is a coaxial line whose inner

conductor is connected through a hole in the groundplane to the vertical

monopole element and whose outer conductor is connected by means of a

flange to the groundplane. Typically, the inner conductor diameter is

equal to the monopole element diameter and the outer conductor diameter is

equal to the groundplane hole diameter. Unless stated otherwise, such a

feed will be assumed in this study. The ratio of the coaxial line's outer

to inner conductor diameters affects the antenna's input impedance, but only

significantly for a relatively thick monopole element on a very small

groundplane.

For the idealized case of a groundplane of infinite extent and of

infinite conductivity, the monopole antenna may be modeled by the method of

images as a dipole with one-half the input impedance and double the peak

directivity of the dipole. The infinite groundplane prevents monopole

radiation into the hemisphere below the groundplane but allows a radiation

pattern identical to that of the dipole in the upper hemisphere. However,

for a monopole element mounted on a groundplane of finite extent, the outer

edge of the groundplane diffracts incident radiation in all directions and

consequently modifies the currents on the groundplane and vertical element

from those of an infinite groundplane. At the outer edge of the

groundplane, the currents on the top and bottom faces of the groundplane

are equal in magnitude but opposite in direction because the net current

must be zero at the edge. Outer edge diffraction becomes increasingly

significant with decreasing size of the groundplane because of increasing

magnitude of the currents on the groundplane faces at the outer edge. Edge

diffraction can alter the input impedance by more than 100% and directive

'" gain in the plane of the groundplane by more than 6 dB from the values for

a groundplane of infinite extent.
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Theoretical models exist for predicting the effects of diffraction by

the outer edge of the groundplane. The existing models may be classified

into two categories distinguished by whether the current distribution on

the monopole element is initially known or is unknown.

When the monopole element is very thin and not too long, its current

distribution is approximately sinusoidal and independent of the radius of

the groundplane. Consequently, the element's current distribution can be

initially specified and only the groundplane's current distribution need be

determined. For this category of monopoles, the theoretical models

reported in the literature consist essentially of Bardeen's integral

equation method for the groundplane radius small compared to a

wavelength 1 ) , Richmond's method of moments (groundplane only) for the

groundplane radius not too large compared to a wavelength( 2), Leitner and

Spence's method of oblate spheroidal wave functions for the groundplane

radius comparable to a wavelength(3 )- (5 , Tang's scalar theory of

diffraction(6 ) and the geometric theory of diffraction (GTD) for the

groundplane radius large compared to a wavelength, and Storer's variational

method for the groundplane radius very large compared to a
wavelength(7 ,(8)

When the monopole element is relatively thick, its current distribution

is no longer sinusoidal and consequently the current distribution on both

the monopole element and the groundplane need to be determined as a

function of the groundplane radius. For this category of monopoles, the

theoretical models reported in the literature consist essentially of

Richmond's method of moments for the groundplane radius not too large

compared to a wavelength 2 ) and Awadalla-Maclean's method of moments

(monopole element only) combined with the geometric theory of diffraction

for the groundplane radius large or comparable to a wavelength(9g ' I0 1.

Thiele and Newhouse have also reported a model which combines the method of

moments with the geometric theory of diffraction but their computer program

(11)
is unavailable

3
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Each of the existing models is valid for different and sometimes

overlapping sets of limited values of groundplane radii. Some of the

models require extensive numerical computation. For these reasons, the

collection of models taken as a whole has several deficiencies. In the

open literature, results for Lnput impedance and directive gain have never

been assembled as a continuous function of groundplane radius for the

entire range of values from zero to infinite wavenumbers. In regions where

models overlap, it is sometimes unclear which models are more accurate. In

some models, numerical results have been reported for only a few values of

groundplane radius. In one model (Bardeen's integral equation) the base of

the monopole element has not been allowed to be in the same plane as the

groundplane which is the present case of interest. Computer programs are

not available for some of the older models because the models were

developed before the advent of computers. One of the most versatile of the

models (Richmond's method of moments) gives only the input impedance but

not the radiation pattern. In one model (Leitner and Spence's oblate

spheroidal wave functions), one of the published algorithms for computing

the elgenvalues is Incorrect. Finally, extensive numerical results for

small groundplanes and for resonant monopoles with finite groundplanes are

not found in the open literature.

This paper attempts to correct these deficiencies. Computer programs

and numerical results are presented for all of the models. The induced emf

method is utilized to determine the input impedance of a thin idealized

monopole element in the absence of a groundplane. In Bardeen's integral

equation method, the excitation function for the groundplane currents is

extended to include the singularity which occurs when the base of the

monopole element is in the same plane as the groundplane. Richmond's

method of moments is extended to give the far-field radiation pattern. In

Leitner and Spence's method of oblate spheroidal wave functions, the

published continued-fraction algorithm for computing the eigenvalues is

44
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corrected. Numerical results for input impedance and directive gain are

presented as a continuous function of groundplane radius for arbitrary

radius. Numerical results of various models are compared and the suspected

best available results are identified. Extensive numerical results are

given for small groundplanes and for resonant monopoles on finite

groundplanes. New experimental data is presented and compared with

numerical results.

Circuit representations of the monopole antenna are developed in

Section 2. Theoretical models and numerical results are presented in

Section 3 for the case in which the current dstribution on the monopole

element is initially known. In Section 4, theoretical models and numerical

results are presented for the case in which the current distribution on

both the monopole element and groundplane are initially unknown. The

theoretical models are compared with experimental data in Section 5.

Computer printouts of directive gain and the far-field elevation pattern

are given in Appendix A. Computer programs of the theoretical models are

given in Appendix B.
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SECTION 2

CIRCUIT REPRESENTATION

2.1 Geometry and Coordinate Systems

Consider a monopole element of length h and radius b which is located

in free space at the center of an infinitely thin circular groundplane of

radius a and of infinite conductivity (see figure 1). The groundplane

radius, when expressed in wavenumbers, is given by

c ka (2.1-1)

where

k = 27r/ = wavenumber (m-1 )

= excitation wavelength (m)

The monopole element and groundplane have current distributions in real

time given by

I(z,t) - Re[I(z)e JWt], I(P,t) - Re[I(P)e j t ]  (2.1-2)

where

= radian frequency of the excitation = 27rc/ X(rad/sec)

c = wave velocity in free space - 2.9979 x 108 m/s

I(z),I(P) - element and groundplane current amplitude distributions,

respectively (amp)

A field point P(r, 0, $), expressed in spherical coordinates, is shown

in figure 1. The field is uniform in the azimuthal direction $. The

relationships between spherical, cylindrical , and oblate spheroidal

coordinate systems are shown in table 1. In the far-field, the elevation

angle 9 is related to the oblate spheriodal angular coordinate 17 by

7 - cos 0 as the spheriodal radial coordinate 4---.*o.

7
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Figure 1. Monopole Element at the Center of a Circular Groundplane
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TABLE 1

Spherical, Cylindrical, and Oblate Spheroidal Coordinates

SPHERICAL CYLINDRICAL OBLATE SPHEROIDAL

(r,9,$) (p, Z, 0) (07M

radius r P r sin 0 P= a[(1-772)(I+42)] / 2

elevation 9 z r cos 0 z - a 7

azimuth 4 4

Note 1: In Table 1, the notation 4,1) is that of Leitner and Spence (L+S),

Franklin Institute Journal, Vol. 249, No. 4, pp. 299-321, April 1950. This
notation is related to that of Abramowitz and Stegun (A+S), "Handbook of

Mathematical Functions", National Bureau of Standards, Applied Mathematical

Series, No. 55, p. 752, June 1964 by

2L+S - 1)1/2L = ( A+S

?7L+ (1 -72 )1/2

L+S -A+ S1 )

Note 2: The cylindrical coordinates (p, z, 4) are related to the rectangular

coordinates (x, y, z) by

x - p cos 4
y psin 
z, z

9
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2.2 Directive Gain and Input Impedance

At a far-field observation point P(r, e, $), the numeric directive gain

d(O,$) of the antenna is defined as the ratio of its radiated power density

s(0,4) to its radiated power density averaged over all directions. The

radiated power density averaged over all directions is equivalent to the

power density radiated by a hypothetical "isotropic" antenna. Accordingly,

the directive gain d(O,$) expressed in spherical coordinates with the

origin at the antenna, is given by

d(O) f s(o) (2.2-3)
-2 7r 7r

(1/47r) J s(O,) sin e d@ d$

For antenna patterns which are uniform in the azimuthal direction, such as for

the antenna geometry of figure 1, Eq. (2.2-3) reduces to

d(O) 7 2 s(9) 1 2 s'()7) = d'(7) (2.2-4)

fs(@) sin 0 de s'(7) d7
s0 1

where

s(O) - (1/2) JifEoC IHAI2 = (1/2 E/Co  IEt 2

H$, Ee - far-field magnetic and electric field intensities,
respectively

s'(77), d'(7) - radiation power density and directive gain, respectively,

in oblate spheroidal coordinates

0 /C 0 wave impedance in free spaceo 0

The numeric directive gain d(R,$) is related to the directive gain D(9,$)

expressed in dBi by

D(e,$) - 10 log1 0 d(O,$) (dBi) (2.2-5)

The total time-averaged radiated power Ptotal of the antenna is given

by

10
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2 7r 7r

Ptotal " f s(9,0) r2 sinO d@ 0

0 0

27rr 2 fs(O) sinO dO - 27r r 2  s-()) 07 (2.2-6)

0 -1

The antenna radiation resistance R, referred to the complex amplitude

I(z-0) of the antenna base current, is defined by

R 2P total/II(z=0) 2  (2.2-7)

Substituting Eqs. (2.2-6) and (2.2-7) into Eq. (2.2-4),

d(9) - s(O) 87rr 2 /[RII(z0)1 2 ] - s(7) 8 rr2/[RII(z=0)12 ] = d-(1)

(2.2-8)

The antenna input impedance, Zin' is given by

where Zin - V(z)/(z-0) = Rin + j Xin 
(2.2-9)

V(z-0) - complex amplitude of the excitation voltage across the

aperture of the coaxial line feed to the antenna (volts)

.Rin = input resistance (ohms)Rin

X in - input reactance (ohms)

The input resistance Rin is related to the radiation resistance R by

Rin = R + R ohm c  (2.2-10)

where Rohmi c is the ohmic loss resistance of the antenna for finite

conductivity of either the monopole element or the groundplane. In the

present paper, R ohmi c f 0 because the monopole element and groundplane are

assumed to be of infinite conductivity. Accordingly,

Rin =R , R ohm c  0 (2.2-11)

Equation (2.2-11) is a statement that the antenna is assumed to have an

efficiency of unity.
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2.3 Relationship Between Radiation Resistance and Directive Gain

on the Horizon

For a vertical monopole element with a finite groundplane, the

far-fiel' radiated power density on the radio horizon, s(O = 7T/2), is

determined only by the current distribution on the monopole element (and

not the groundplane current) since only the vertical monopole element has a

component of electron acceleration which is normal to the radio horizon.

(This statement is not true for a groundplane of infinite extent since then

a far-field point on the radio horizon is on the groundplane.) Identical

monopole elements with identical current distributions, but mounted on

groundplanes of different finite radii, will consequently have identical

far-field radiated power densities on the radio horizon. Accordingly,

0(6 = 7T/2) = so(0 = 7/2); identical monopole element, identical

element current distribution, groundplane of finite extent

(2.3-I)

where the subscript C denotes the radius in wavenumbers of the groundplane

of arbitrary but finite extent (C < oo) and the subscript 0 denotes a

groundplane of zero extent ( C - 0).

If Eq. (2.2-8) is substituted into Eq. (2.3-1) and the quantity

s(E8 2 7/7)(z-O)12/87r2 is computed, one obtains the following

relationship between radiation resistance R and numeric directive gain on

the horizon d(9= 7r/2):

d (9 7T/2) RE = d0 (o=7/2) R0 = constant;

Identical monopole elements, identical element current

distributions, groundplane of finite extent (2.3-2)

12
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In Eqs. (2.3-1) and (2.3-2) the condition of identical element current

distributions for groundplanes of different radii is generally not

satisfied by monopole antennas. The element current distribution 1(z) is

generally dependent upon the groundplane current l(P) which in turn is a

function of the groundplane radius. However, for monopole elements which

are sufficiently thin electrically and not too long, the element current

distribution l(z) is approximately sinusoidal and independent of the

groundplane current l(p) (see Section 3.1). Expressions for do(=7T/2) and

Ro, for elements with a sinusoidal current distribution, are determined in

Section 3.2. Substitution of those expressions into Eq. (2.3-2), for the

case of an infinitely thin monopole element (b=O), yields

d(O -7r/2) R - (17/47r) [I - cos(kh) 2/sin 2(kh); b=0,

sinusoidal element current distribution, groundplanes of

finite extent (2.3-3)

where

7 = wave impedance of free space = 376.73 ohms

h - length of the monopole element

The condition b=O may be removed from Eq. (2.3-3) without substantially

altering the result since the radiation pattern and radiation resistance of

electrically thin elements, which are not too long, are weakly dependent

upon the element radius (see Section 3.2).

2.4 Characterization of Currents

The characterization of the currents on the monopole element,

4* groundplane, and coaxial line feed is illustrated in figure 2. The

physical realization, circuit representation, and two circuit idealizations

of the currents are shown in figures 2(a), 2(b), 2(c), and 2(d),

respectively. In Fig. 2(b), the coaxial line excitation of Fig. 2(a) is

replaced by equivalent electric and magnetic currents on a conductor

completely enclosing the coaxial line. In Fig. 2(c), the normalized

ferrite attenuation distance hI /X << I is idealized to be zero. In Fig.

2(d), the magnetic frill M is assumed to be negligible.
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The currents of interest are the element current l(z) (positive in the

+ z direction), the return current I (z) on the outside of the coaxial line

outer conductor (positive in the + z direction), the current I bot(P) on the

bottom face of the groundplane (positive in the + P direction, and the

current I top(P) on the top face of the groundplane (positive in the

negative P direction). A net groundplane current l(P) (positive in the

positive P direction) is defined as

I(P) = Ibot(P) - Itop(P) (2.4-1)

In the physical realization of the currents [figure 2(a)], lossy

ferrite toriods are mounted along the outside of the coaxial line outer

conductor. Such a procedure is commonly utilized on antenna ranges to

reduce the radiation or pickup of unwanted signals from currents induced on

the outside of the transmitter or receiver coaxial cables. For a

sufficient number of ferrite toroids near the termination end of the

coaxial line, the return current I (z) is approximately zero at distance

greater than the l/e attenuation distance h from the termination end of

the line. In this paper, the ferrite toroids are assumed to be

sufficiently lossy so that

h X (2.4-2)

where X is the excitation wavelength.

The radii of the outer and inner conductors of the coaxial line are b

and b, respectively, where b is also the radius of the monopole element.

The wall thickness of the coaxial line outer conductor is assumed to be

much less than its diameter. Consequently, the return current I (z) occurs
r

at the radial cocrdinate p bI.

15



The constraints on the various currents are:

element I(z-h) - 0 (2.4-3)

groundplane I(p=a) = 0 (2.4-4)

coaxial line Ir(z);0, -00< z <-h1  (2.4-5)

element-groundplane I(z=0) = -I(P=b) (2.4-6)

groundplane-coaxial line I bot(pb ) = I r(Z-0) (2.4-7)

The element and groundplane constraints are a consequence of an open

circuit at the end of the element and the groundplane. The coaxial line

constraint is a consequence of the lossy ferrites. The element-groundplane

constraint is a consequence of conservation of charge (Kirchhoff's cu, cent

law) at a node. The groundplane-coaxial line constraint is a consequence

of conservation of charge along a conductor.

By the use of the equivalence principle( 12 ) the coaxial line feed

excitation may be replaced by equivalent tangential field excitations

defined along a surface completely enclosing the coaxial line. At field

points eternal to this surface the equivalent field excitations will give

the same field as the original source excitation. In the circuit

representation of the monopole antenna currents [figure 2(b)], the coaxial

aperture excitation is replaced by an equivalent surface magnetic current

density (magnetic frill) M which sits on top of a thick groundplane of

radius bI . The magnetic frill M is defined to be positive in the positive

azimuthal direction and is given by

- V(O)/[Pln(bl/b)] b < p < b

M 01' (2.4-8)

0 p 6< b, P> b



Eq. (2.4-8) is derived as follows. The radial field E of the coaxial

line aperture, assuming a TEM mode excitation, is given by

V(O)/Pln(bl/b), b <P< b

E= (2.4-9)

0 , P<b

where V(O) is the positive voltage at z-0 across the aperture with the

coaxial outer conductor at zero potential. By the equivalence
prinipl(12) -f

principle , an aperture field may be replaced by a magnetic frill M

which sits on top of a groundplane congruent with the aperture surface and

which is defined as

M = Etangential x n (2.4-10)

where n is the outward normal to the aperture surface and E tangental is

the tangential field at the aperture surface. Substituting Eq. (2.4-9)

into Eq. (2.4-10),

( Ep) x uz =- U = M (2.4-11)

where M is given by Eq. (2.4-8). Eq. (2.4-8) agrees with the result

obtained by Richmond(2)

In the circuit representation of figure 2(b), the net groundplane

current I(p) is the same as defined, by Eq. (2.4-1) with the additional

current constraint

I bot(P) - 0* 0 <p< b (2.4-12)
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If the circuit representation of the monopole antenna in figure 2 is

now idealized by setting the ferrite i/e attenuation distance h1/A=O, then

Ir(z) -0 for z < 0, hi/X= 0 (2.4-13)

Consequently, the coaxial line outer conductor may be removed from the

circuit as shown in figure 2(c). The groundplane - coaxial line current

constraint of Eq. (2.3-7) is not disturbed by such an idealization. Since

it has already been assumed that hl<< X, the idealization h,= 0 does not

appreciably alter either the radiation pattern or the input impedance of

the monopole antenna provided that the monopole length h >> h Finite

currents, on an aperture which is small compared to the excitation

wavelength, contribute little to the far-field and input impedance

(compare with the results for an electrically-small dipole). Experimental

radiation patterns and measurements of input impedance (see Section 5)

confirm that the use of lossy ferrite toroids along the coaxial line outer

4conductor yields results which are in close agreement with theoretical
results for the circuit idealization condition of Eq. (2.4-13) -- even for

* !electrically-small groundplanes.

In the idealization of the monopole antenna circuit, the magnetic frill

M may be removed [figure 2(d)] without appreciably altering the radiation

pattern or input impedance, provided that

kb1 <<I knnconditions for neglecting magnetic frill

1(z) or 1(p) is initially known (2.4-14)

18



The condition kb << 1 corresponds to the condition for TEM mode excitation

of the coaxial line and for negligible power being radiated from the

coaxial line aperture. If either I(z) or I(P) is initially known then the

one which is not known may be determined from the other without requiring a

knowledge of the original coaxial line excitation or its equivalent --

provided that the field radiated by the known current distribution is the

predominant field incident on the conductor whose current distribution is

unknown. When neither l(z) nor 1(P) is known, then the original source

excitation or its equivalent (in this case, the magnetic Frill M$) must be

specified to determined the unknown radiated fields.
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SECTION 3

MODELS IN WHICH THE CURRENT DISTRIBUTION ON THE MONOPOLE

ELEMENT IS INITIALLY KNOWN

3.1 Boundary Conditions

The current amplitudes, 1(z) and I(P), on the monopole element and

groundplane, respectively, are generally complex and initially unknown

quantities (see figure 1). Consider now the case where the current

distribution on the monopole element is assumed to be sinusoidal. For such

a case and for the waveform dependence given in Eq. (2.1-2),

I(Z) 1(0) sin[k(h-z)], 0 < z < h (3.1-1)
sin(kh) - -

where

h = monopole length (m)

k = 27T/X= wavenumber (m
- )

1(0) = current amplitude of the monopole base current at z=O (amp)

From Eq. (3.1-1)

arg l(z) = constant, 0 < z < h (3.1-2)

Although a sinusoidal distribution of current is not possible even for

an infinitely thin antenna, Eq. (3.1-1) is most likely a fair approximation

to the current if the monopole element is sufficiently thin electrically

21
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and not too long. ( 13 ) For a center-fed dipole of radius b and total

length 2h, Elliot (14 ) gives examples where the current distribution is

approximately sinusoidal and is of approximately constant argument for

b/X- 1.0 x 10- 4 and h/A - 0.125, 0.25. However for b/X - 1.0 x 10-4 and

h/X = 0.375, 0.5 Elliot demonstrates that the current distribution is no

longer sinusoidal near the center of the dipole nor is arg z approximately

constant. Balanis (1 5 ) shows that for b/X = 2.0 x 10- 4 and h/X = 0.25, 0.5

the current distribution is not sinusoidal near the center of the dipole.

Elliot and Balanis also demonstrate that for b/X = 1.0 x 10 - 2 and h/X =

0.125, 0.25, 0.375, 0.50 the current distribution is neither sinusoidal nor

of constant phase and that the deviations from Eqs. (3.1-1) and (3.1-2)

increase with increasing values of h/) and b/)A. On the basis of the above

results, it appears that Eqs. (3.1-1) and (3.1-2) are approximately valid

for the conditions

b/X < 10 - 4 h/X< 0.25 (3.1-3)

In addition to the constraint on l(z) given by Eq. (3.1-1), assume that

the return current I r(z) on the outside of the coaxial line outer conductor

(see figure 2) is given by

I r(z)O , z < 0 (3.1-4)
.4

The constraint of Eq. (3.1-4) corresponds to the idealized condition that

.the ferrite toroids have a I/e current attenuation distance h, given by

. /X= 0 (3.1-5)

It should be noted that Eqs. (3.1-4) and (3.1-5) do not alter the

constraint I (Z=O) Ibt(P= b1) given by Eq. (2.3-7) nor do they impose

any constraints on Ibot (p b,) where 'bot (P b,) is the current on the

bottom of the groundplane at a radius equal to that of the outer conductor.
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Combining the current constraints given by Eqs. (3.1-1) and (3.1-4)

with those given by Eqs. (2.4-3) - (2.4-7) and Eq. (2.4-12), the current

constratnts on the monopole antenna are given by

element l(z) = [I(O)/sin(kh)]sin[k(h-z)], 0 < z < h (3.1-6)

groundplane 1(0Oa) = 0 (3.1-7)

I = 0, 0 <P< b1  (3.1-8)

coaxial line I (z)ZO, z < 0 (3.1-9)

element-groundplane I(z=O) = -I(P-b) (3.1-10)

groundplane-coaxial line I bot(P) Ir (ZO) (3.1-11)

In Section 3, it will be assumed that all models satisfy the current

constraints given by Eqs. (3.1-6) - (3.1-11). The results are expected to

be approximately correct if the monopole element is electrically

sufficiently thin and not too long [Conditions (3.1-3)] and if the ferrite

toroids are sufficiently lossy [hl/ << I, idealized by Condition (3.1-5)].

For these conditions, the circuit representation of the monopole antenna is

shown in figure 2(d).

For the current constraints of Eqs. (3.1-6)-(3.1-11), the total
(oa)-(total)magnetic and electric field intensitiesH(ttal), at an arbitrary

field point P(x,y,z) external to the element excitation source points are

simply the vector sum of the fields resulting from the element current and

the current induced on the groundplane by the fields incident from the

element.

Accordingly,

- (total) _-(e) + -g)-(e),-(e)] current constraints of
I ,Eqs. (3.1-6)-(3.1-11) (3.1-12)

- (total) - +((e) e ,-(e) Eqs.
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where

-(e) -(e)
H , E = magnetic, electric field intensities, respectively, generated

by the element current

H -(g) = magnetic, electric field intensities, respectively, generated

by the groundplane current induced by the element incident

fields.

-(e) -(e)
The element fields H ,E are determined in Section 3.2. The

groundplane fields-H E are determined in Sections 3.3 - 3.8 for

groundplane radii of various extents.

3.2 Induced EMF Method, Groundplane of Zero Extent

Concept of a groundplane of zero extent

Consider a monopole antenna excited by a coaxial line whose outer

conductor of radius b1 is terminated by free space rather than by a

groundplane [figure 3(a)]. The groundplane for such an antenna is denoted

as being of "zero extent". As was shown in Section 2.4, the coaxial line

excitation may be replaced by an equivalent magnetic current (frill) M$

sitting on top of a thick groundplane of radiusp- b, [figure 3(b)]. For

sufficiently lossy ferrite toroids along the outside of the coaxial line,

the current on the exterior of the coaxial line outer conductor may be

neglected [figure 3(c)]. The magnetic frill may be removed from the

circuit without appreciably affecting the results since kbI << I for the

assumed sinusoidal current distribution on the monopole element [see Eq.

(3.1-3) and the discussion concerning the circuit idealization of figure

2(d)]. Finally, the groundplane of radius bI may be removed from the

circuit without appreciably affecting the results since a finite current on

*an electrically-small conductor does not radiate appreciable power compared

. to the power radiated by a monopole element of length h >> b The circuit

idealization of a monopole antenna with a groundplane of zero extent is

therefore an electrically thin monopole element with no groundplane [figure

3(d)].
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* The near-fields, far-fields, and input impedance of an electrically

thin monopole element are derived and summarized in the remainder of

Section 3.2. The input impedance is derived by the induced emf method.

Near-fields

Consider a monopole element of length h with a sinusoidal current

distribution l(z') =[1(O)/sin(kh)] sin [k(h-z')]. 0 < z- < h, at points

Q(x', y', z') on the surface of the element (figure 4). For an

electrically-thin element with a known current distribution, the fields at

arbitrary points P(x, y, z) external to the element may be determined

almost exactly be approximating the source points to lie on the element

*axis, i.e., Q(x', y', z') Q(O, 0, z). For the current waveform of

Eq. (2.1-2), the magnetic vector potential Ais given b

#0I(O) h
A(x,y,z) = u zA z= uj 7si~h sin[kch-z')]exc(-kP') dz'

0 z n Q (3.2-1)

where 9 0= permeability of free space = 4rx 10- henries/n

PQ= [(x-x') 2 + (Yy) 2 + (Z-Z')2 1 1/2

[2 +Y2 + ZZ)2 11/2 =[2 +(z)2 11/2

U P, u V u z= unit vectors in the radial, azimuthal, and axial

cylindrical directions, respectively.

The magnetic and electric Hield intensities, H and E, respectively, are

given by

6A z
H - (x A) u aP(322
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oH

E x 1 = - + u(PH
H) -u~5 N We P 3P

0 0 (3.2-3)
= 10-12

where Co permittivity of free space = 8.854 x 10 farad/m

Exact closed form expressions of A, H, E and rad~atoi resistance were

* first obtained for an infinitely thin element by Brillouin ( 17 ) and are

summarized by Stratton (18) The magnetic and electric f[elds are given by

"A. ; H - 4 nkj 1(0) exp(-Jkro ) - cos(kh) exp(-jkr)

-jz sin(kh) exp(-Jkr) (3.2-4)

E J 1(0) 17 (z-h) exp(-Jkr0 ) z cos(kh) exp(-Jkr)

+sin(kh) ex(jk) i z2 ( Jk 21

kr (3.2-5)

E = -j 1(0)!I exp(-Jkr° cos(kh) exp(-Jkr)

z 4 7rs in(kh) r 0r

+ sin(kh) 3 exp(-jkr)Oz r 1

-j 1(0)77 exp(-Jkr0 ) - cos(kh) exp(-jkr)

4 r s in(kh) r r

sin(kh) exp(-Jkr)[ + 1 3 (3.2-6)
Ir kr3
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where

Y7- k/JEo = wave impedance of free space = 376.73 ohms
r° = [2 2  + (z-h)12]/2

r = (p2 + z2 )/2

Eqs. (3.2-4) - (3.2-6) are identical to the results given by Stratton

[2 -h 0, 1 = h, C kh, r2 = rI  r, I = -I(O)/[sin (kh)]
after the substitution of -j for j to account for the exp (-jwt) waveform

of Stratton instead of the exp(jwot) waveform of Eq. (2.1-2). The fields

given by Eqs. (3.2-4) - (3.2-6) are exact for an infinitely-thin element

and are almost exact for an electrically-thin element with the same

sinusoidal current distribution.

Far-f ields

Consider a field point P at a sufficiently large radial distance r

- which satisfies both the far radiation zone and Fraunhofer diffraction

conditions given by

h << r, kr >> 1; far radiation zone conditions (3.2-7)

kh2/2r X( 27T; Fraunhofer diffraction condition (3.2-8)

For these conditions,

exp(-jkro);exp[-kj(r-h cos9)], h << r, (kh2/2r) << 27T

I /r 1/r, h << r

z - h:z r cos8, h << r (3.2-9)

(1/kr) - (z2 /kr3) - (jz2/r2),-j cos29, kr >> 1
.o4

"-" 2 k3 (/2
(J/r ) + (I/kr )z(J/r 2 kr >> I
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For the approximations of Eq. (3.2-9), the "exact" fields given by

Eqs. (3.2-4) -(3.2-6) reduce to the far-fields given by

,.~TO = 4xrsl ( ikh) rxp (jkhcosA) - cos(kh) cosA sn(kh)47rr sing sin(kh) L I (1.1-10)

F I I(O)?7cosP exp(-Jkr)_ csk) oP ikhE -j- T(flk cos(kh) -j cos s-n(kh

z 47rrr stn(kh) - o)h 1cs f~h(3 .9-1°

A

The resultant electric field =UF + u e reduces in the far fel to

E (3 ) e t h far-fields gv by.f

where
H@ =j T(0)77exp(-ikr) j -

F= 4 slng exn( I -cos(kh) -j cosA sin(kh)

p 47rr sing sn(kh)L(3.-

The time-averaged Poynting vector S = (1/2) (F x 4=

(112) (u' E9 F uA X UO 1r s(Q) with a time-averaged radiated Power density

s(R) given by

S 12 ) 7/ M 1T(n) f() (1 )sz ) = 4E2/2r )n( 2) 37 r' s (kh)

where

2
F IT[cos(kh F -cos(kh) 1 cos)n cos 1 sin(kh)l

sin A

(1/2 (irction of maximum radiated power Is A veT/2 rad.

s)gveb

-(),IFV(7) (72IH2'-,) ()(3~-4
'2-12 39Tr]o2(

wher

#m.2

f() co~h os) oskh] sin~h oP)- osPsf~k)



Substituting Eq. (3.2-14) into Eqs. (2.2-6) and (2.2-7), the radiation

resistance R, referred to the base-current, is given for an infinitely thin

element by

f J f(8) sine dO
R = (ohms)

87r sin 2(kh)

= 1 [Cin(2kh) - sin2(kh)J, b=O (3.2-15)

4rsin 2(kh)

(19)= dt
where Cin(z) = modified cosine integral =J

-  -s-t (1-cos t).

"A The result given for the definite integral of Eq. (3.2-15) is readily

obtained by letting t -cos 9 and noting that

l-t2 = 2 [x T

where x = l+t and y = l-t.

Substituting Eqs. (3.2-14) and (3.2-15) into Eq. (2.2-8), the numeric

directive gain d(e) is given by

d(O) = f(e) (3.2-16)

Cin(2kh) - sin (kh)

where f(O) is defined in Eq. (3.2-14).
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For electrically-short monopole elements (kh << 1) and for?7= 376.73

1207rohms, Eqs. (3.2-14) - (3.2-16) reduce to

1=, (kh) 4  sin 2 0 kh << 1 (3.2-17)
.44

~~15 (kh s" n (k)9 i

= 15 1(0)2 (kh) ,sin 2 kh << 1 (3.2-18)
16 7r r

R = 5 (kh)2 (ohms), kh << I, b = 0 (3.2-19)

i d~e = 3sin92

d(2) -3si , kh << 1 (3.2-20)

The relative power radiation pattern s(O)/smax = s(9)/s(7r/2), radiation

resistance R, and the directive gain (directivity) d(e) are tabulated in

Appendix Al, Tables Al-I, Al-14, AI-26, AI-38 for h/X= 1/4, 1/10, 1/40,

and 1/100, respectively. The numeric directive gain pattern d(e) for a

quarterwave monopole element [see figure 8(a) in Section 3.9] is similar to

that of a half-wave dipole except that its peak directivity is less (1.88

dbi vs. 1.76 dBi) and its 3 dB beamwidth is more (94 deg vs. 78 deg).

Input Impedance

The input impedance may be determined by the induced emf method

introduced by Brillouin(17 ). With reference to figure 4, the input

impedance Zin is given by
(20 )

h

Zin -(l/I) fI(p= b, z = z') E(# = b, z z') dz', b > 0

0

(3.2-21)

where

qI' = I(0)/sin(kh).
Im
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The induced emf method is indeterminate for collinear current elements

unless the elements are of radius b > 0. For sufficiently thin elements,

41 the current I zis given by Eq. (3.1-1) and the electric near field E zis

given almost exactly by Eq. (3.2-6). Substituting Eqs. (3.1-1) and (3.2-6)

into Eq. (3.2-21),

Z - P? h fz ifkhz) exp(-Jkr 0)
in 4iTsin(kh) f ri~~~) 0

-cos(kh) exp(-Jkr) + sin(kh) [exp(-jkr) i
r 3z L r J1( 3.2-22)

where 22/
r = [b 2+(z-bh) 2 I/

r=(b 2 + '2l)/2

Each of the three terms of the integrand of Eq. (3.2-22) may be integrated

by the methods summarized by Stratton (18 ) . However, the third term of the

N integrand should first be integrated by parts.

Accordingly,

Zin -R in+ j Xin mZ I+ Z2 +Z3 (3.2-23)

P where
WA h

Z, W J77 2 f dz( sin[k(h-z)] exp(-jkr 0) .R+

41Tsin (kh) 0 r 0(.-4

.4 ~~R1 mi 2 kh ~-- Cin(x1 ) + -- L Cin(x)- Cin(x3 1(2-5

-X____ Six + -Lsi() Si() (3.2-26)
41Tsin 2(kh) 21 2 23
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h

ZI 4s(J 0-dz' sin[k(h-z')] cos(kh) exp(-Jkr) - R2+ jx2
41sin (kh) 0 (3.2-27)

R = 17 sin(2kh) [Si(xI) 1 Si(x 2 )]2 41Tsin 2(kh) 4

2 4

+ Cos2(kh) [-Cin(x3) + 1 Cin(x2 ) + -2- Cin(x)1 (3.2-28)

X2 )  sin(2kh) [Cn(x2) - Cn(xl) +In(xl/x2) ]

2 41zsin 2(kh) 4Cn 2) 1-

+ cOB2(kh) [Si(x ) + Si(x 2) - 2 Si(x 3)]  (3.2-29)

h

Z = -2 fdz- sin[k(h-z')] sin(kh) exp(-jkr)] R JX
3 4n~sin 2(kh -' L r J= R3  j 3

0 (3.2-30)

R 3 7 2 sin2 (kh) [Cin(x l) + Cin(x2) 2 Cin(x3 )41Tsin2 (kh)l 2

2(x + x2 ) (sin xI + sin x ) 4 x3 sin x
+ 12 2- 1 ]2 2 2 22

xI + x2 + 2(kb) x + (kb)

1(2kh 1 32
sin(2kh) i(x2) - Si(x) - 2 2 2 )11

4 IS + x2 + 2(kb)
(3.2-31)

__7 sin2 (kh)

3.4rsin2(kh) 2 i(xl) + Si(x 2) - 2S1(x 3 )

2(x + x2 ) (cos x + cos x2 ) 4 x3 cos x 1
2 2 2 2

xI + x2 + 2(kb) x3 + (kb)

+.sin(2kh) Cin(xl) + Cin(x2) + In(xl/x2)
4 1 1 2

2(xI + x2) (sin xI -sin x2 ) (3.2-32)
x, 2 + x 2 + 2(kb) 

21 11
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where

x 1 = k[(b
2 + h2)1 /2 + h]

x k[(b 2 + h2) 1/ 2 _ h]

x3  kb

Cin(x) = modified cosine integral (19 ) f d (1-cos

0co t)

Si(x) = sine integral ( 19 ) = sin t dtt

,, ,.Summing Eqs. (3.2-23) - (3.2-32),

R 7 Cin(x I + Cin(x2) - 2 Cin(x3)
i Rn =4Asin 2(kh)l

+ sin(2kh) (X1 + x2)(Cos X1 x2)2 x 22 +x2 +2+ 1 x2  3
+ sin2 [ (x1 + x2 )(sin xI + sin x2) sin x3

x+sn (kh) 2 +2 + 2x2  x 3
1 2x 3_ . 3(3.2-33)

*- * x I ) + Si(x 2 Si(xin 49sin2 (kh)

sin(kh) (x 1+ x 2)(sin x - sin x2- 2 [-22 2-j

2 + + 2x3

2 2 3I

n(x1 + x2)(Cos x1 + Cos x2  Cos x3
sin 2(kh) +2 2 + 2 2 x3- xI  x2  +2 3

2 2/2 2/(3.2-34)

where x k[(b2 + h ) / 2 + h], x2 = k[(b 2 + h ) / 2 
- h], x3 = kb.
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For b-, Eqs. (3.2-33) and (3.2-34) reduce to

R = 277 [Cin(2kh)- sin 2 (kh)] , b=O (3.2-35)

in 4[i 2 1k
x =7 [Si(2kh)- sin 2(kh) b--0O (3.2-36)
in 4n sin 2 (kh) kb

Eq. (3.2-35) agrees with the result for radiation resistance given by

Eq. (3.2-15). A comparison of Eq. (3.2-33) with Eq. (3.2-35) reveals that

the input resistance is relatively insensitive to the monopole element

radius b for kb << 1. The input resistance given by Eq. (3.2-35) is

plotted in figure 5. For kh = 7r/2 radians, R = 19.4 ohms.

The input reactance is sensitive to the element radius b as seen in

Eq. (3.2-36). For b = 0, the input reactance is given by

- ohms, kh # nr , n 1, 2, 3

x in I b 0 (3.2-37)j oo ohmo, kh= nr, n 1, 2, 3 ...

From Eq. (3.2-36), resonance (Xi 0) occurs for
.)?i

_1/
(kh) rn 7r+ [kb Si(2nr)] , n = 1, 2, 3 ... (3.2-38)

The input resistance at resonance, for kh given by Eq. (3.2-38), is found

from Eq. (3.2-35) to be

(-R-) 1 C in (2n) ] (3.2-39)
In (nresonance 47r kb Si(2n7r) -

Minima of input resistance occur for kh given by
I

(kh) = (N +--- )7r , N 1 1, 2, 3, ... (3.2-40)
minima

. . . . . . . . .-.. .... . . . ." "- " "- --6.- :" -' -;." ".
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The input resistance at these minima element lengths is found from

Eq. (3.2-35) to be

(R)minima 47 Y - I + In[(2N + I)7] (3.2-41)

where
Y= Euler's constant = 0.57721

The accuracy of Eq. (3.2-40) increases as N -- oo.

Summary of Results

The input impedance and directive gain properties of quarterwave and

electrically-short monopole elements with groundplanes of zero, large, and

infinite extent are compared in Table 4 of Section 3.9. The peak

directivity is approximately 3 dB less with groundplanes of zero extent

than with groundplanes of large extent. However, the directive gain on the

horizon is approximately 3 dB more with groundplanes of zero extent than

with groundplanes of large but finite extent. The radiation resistance

with groundplanes of zero extent is approximately one-half that with

groundplanes of large extent.

Unlike dipole elements in free space whose first resonance occurs for

dipole half-lengths approximately equal to a quarterwave, monopole elements

A with groundplanes of zero extent have a first resonance for an element

length approximately equal to a half-wave.

A38
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3.3 Integral Equation, 0 < ka < 2.75

In Section 3.2 the fields generated by the monopole element were

determined. These fields impinge on the groundplane and induce a

groundplane current. For sufficiently small groundplanes, the fields

generated by the groundplane current may be determined by Bardeen's

integral equation method (1 ) .

In this method a cylindrically symmetrical electromagnetic wave

(generated by the element) is incident on the groundplane disc. The

fields generated by the induced groundplane current are required. The

solution depends upon solving an integral equation of the first kind.

For groundplane radii of arbitrary radius, the integral equation is

not readily solvable because it contains two integrals. However, for

sufficiently small groundplane radii, Bardeen neglects one of the

integrals so that the integral equation may be solved explicitly.

Although Bardeen gives a general formulation of the solution for

the resulting single integrand integral equation,his only explicit

results are for the case when the incident wave is generated by an

infinitely thin dipole element whose base is at a non-zero height

above the center of the groundplane. Bardeen restricted his solution

to elements at a non-zero height above the groundplane in order to

avoid having a source point (the base of the element) at a near-field

point of interest which, for the integral equation method, includes
the center of the groundplane. The total field is then given by the

vector sum of the incident field and the induced field [see Eq.

3.1-12].
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The present case of interest is a monopole element whose base is

in the plane of the groundplane, i.e., at a vertical height v-O above

the center of the groundplane (see figure 6). For this case, the

total magnetic field may be determined by first evaluating the field

with the element at an arbitrary height v > 0 and then by evaluating

the resulting expression in the lim v- 0. 'Ry such a procedure, an

indeterminate expression is avoided for the field generated by the

induced groundplane current.

Accordingly, the total magnetic field intensity H (total) rsee Fq.

(3.1-1.2)] in the limit v-O is given by

H(total). lim H(e) + lm H (g) (3.3-1)

v-0 $ v--O v-#0

where H(e) and H(g) are the magnetic field intensities generated by

the element and groundplane currents, respectively. Tn the following

evaluation of the two terms of Eq. (3.3-1), the fields are assumed to

have an ejWt time dependence [see Eq. 2.1-21 unlike the e- j t time

dependence assumed by Bardeen.

The first term of Eq. (3.3-1) is given exactly, for an Infinitely

thin element, by [see Eq. 3.2-41

lim H (e) j 1(0) [exp(-Ikr -cos(kh) exp(-,Ikr)
v-.0 47p sin(kh) 0

i z sin(kh) exp(-jkr

40
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z

p(p4~z)= P(r4,6)

aa

x

Figure 6. Thin Monopole Element Whose Base is Above the Center
of a Circular Groundplane
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In the far-field, Eq. (3.3-2) reduces to [see Eq. (3.2-10)]

lim H (e) = A [1 exp(ikh cosg) + i cos(kh) + cosA sin(kh)]
V-0 far-field

where

-Jkr
A' - 1(0) e
o 47rr sinO sin(kh)

The second term of Eq. (3.3-1) may be evaluated by utilizing

Bardeen-s Eq. (31) for H g ) which he obtained as a solution to his

single integrand integral equation. For an infinitely thin element

and for sufficiently small groundplanes (ka.Sl), 11(g) Is given by

Bardeen's Eq. (31) as

V

Hfg )  sgn~z) F(s) K(s) ds, ka' l
0 (3.1-4)

where
i i-JkA 1  -jkA2

K(s) = e sinh(kBl) sinh(ks) - e sinh(kB,) sinh(ka)

sinh(ka)

+1, z > 0

sgn(z) =

1-1, z < 0
C M permittivity of free space (farad/m)

A1 - JB = {p2 + [-ja + z sgn(z)] 2 
1 /  = [r2 - sgn(z) 2ra cosA - a2 1f2

A2 - J = = fr2 - sgn(z) 21rs cosk - s21

s - dummy variable with the dimension of length

-- F(s) = excitation function related to the radial electric

near-field intensity E(e). which is incident on the
r z

groundplane.

42
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The second term of Eq. (3.3-1) is therefore given by

lm, = sgn(z) Vlm IF(s)K(s) ds, ka < I

= sgn(z) kJWt J [um F(s)] K(s) ds, ka < I!v-df) J(3 --)

The excitation function F(s) is given by Bardeen's Eq. (39) as

2f p h(p) stnfs (p 2 _ k 2 ) 112_
F(s) = - 2 dp (1.3-6)

7-. p 2 ) 1/2

where

p = dummy variable with the dimensions of (length)
- I

h(p) function of the radial electric near-field Intensitv

F(e) 0 which is incident on the proundplane.
p Z=O

The function h(p) is given by Bardeen's Eq. (33) as

oo0

SF(e) z=O h(p) Jl(pp) dp (a.3-7)

0

where Jl(x) = Ressel function of the first kind.

The electric field Intensity '(e) incident on the groundplane

is given by

,, A~x (e),e), * x ( x )
:" P z=O P .(A) 0Uo 0 z=n
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where

A(e) -magnetic vector potential generated by the monopole

source points

Po permeability of free space (henry/n)

u = unit vector in the cylindrical radial direction

The magnetic vector potential A (e) for the element base at an

arbitrary height v is givenby(6

-~ h

u~e z (p1 /47r) I 1(4) (1/ Q) exp(-IkPQ) d4 33q

where

u= unit vector along the z axis

PQ = distance from source point Q to field point P
+ z-4-v21/2 , Q -x y, -Z (0, , )

T(4) =monopole current distribution rr(O)/sin(kb)1 sInfk(h-tfl.

In order to facilitate the evaluation of h(p) In Eq. (3.1-7), It

is convenient to express the factor (i/POQ) exp(-jkP;O) in terms of

Bessel functions. Using Sommerfeld s formula (2 1 ) and the dummy

variable p introduced in Eq. (3.3-6),

00

-~~~~ 2)/2 1 r - /2), -T r

.310
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Substituting Eq. (3.3-10) into Eq. (3.3-9),
h r

(e). 0) 0 x~ -4 i0 -I/ (p2 f 
)

- (1r/2) < arg p- k< (r/2), -7r< arg k < 0 (3.1-11)

Since we are interested in evaluating (e) lz-' consider the case

z < 4 + v. Substituting Eq. (3.3-11) for such a case Into Fq. (3.3-8)

and noting that

-" e) ^ 3 (pp)
A u - A and = -pJ 1(pp),iz z

E (e) = 1 2A
'I z0 ,,,4 5~p
P lz=O = -J(djUo pz=O

00

= _ 1(0) f p2 J(p p) expkZ-V) 2  1 R-P k-j47TrWEoin(kh) LZ=1)

where (3.3-12)

h

B(P) sinfk(b - 4)1 exp L- "- k2 d4

= exp [ p + p - k 2 sin(kh) - k cos(kh)

p2
", (3.3-13)

Substituting Eq. (3.3-13) Into Eq. (3.3-12) and letting z'O,

0-k- --

E(e 1 1(0) dp J (pp e 2e 1E I
EP |z=O = J4 7rt C(0 sln(kh)l J1PP0 e -

+ 2/ _ k- sin(kh) - k cos(kh) 1 (3.3-14)
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Comparison of Eq. (3.3-14) with Eq. (3.3-7) yields

(p) 1(0) [k e- (h + v) 2 _ k2

J47rTWE sin(kh)0

2 2 2 2 21
+ p2 - k 2 sin(kh) e -k cos(kh) e- p

i (3.3-15)

Substituting Eq. (3.3-15) into Eq. (3.3-6)

s- 2 C k [II + sin(kh) 2- cos(kh) I31
F(s) 7

7T k (3.3-16)

where

C 1(0)
'p. j 47rGW sin(kh)

0

00 2f.- IIPe(h + v) lvp - k4

,.e, ) k sin(s p - k2 ) dp
S (p 2 _ k 2) 1/2

00.::: oo2 k2

12= p sin(s 2 k -2 e- -k dp

[00 2 2D 2 k2

-3 p sin(s p ) e dp
S(P2_ k2 ) 1/2

In integrals T1, 12, 13, we introduce a change in variable p to y given by

y"(p 2  k2 ) 1/2, - (7r/2) < arg y < (7r/2) (3.3-17)

where the condition on y follows from the conditions of Eq. (3.3-1n).

i
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From Integral 2.663.1 of Ref. [221, it follows that I1 is given by

I  
f  -(h + v)y sin(sy) dy e -(h + v)2 [-h + v) sin(sy)

= sin s(h + v72+ , '2

S -k(h + v)

-s cos(sy)] ( e +h2 + s2 [-J(h + v) sinh(ks) - s cosh(ks)]

(v +h) +s9
Jk (3.3-IR)

* From Integral 2.667.5 of Ref. [22], it follows that 12 is given by

00 cY -vY
2y sin(sy) e- v y dy = e -l2vy +

2, +2 + 22 [ln\sy)

S(-: + v2  cos(sy)

::F ik

______[v2 -? 2  lhk)- scs~s
e .kv. [kv sinh(ks) - jks cosh(ks) - (v 2 s2snh(ks) -2 vs cosh(ks)

s' s2+ v 2  s2+ v2

From Integral 2.663.1 of Ref. (221 It follows that 13 is given by

1vsin(sy) ev y - v sin(sy) - s cos(sy)1 3 = f i~ y dy -e 22

jks+ v ]
" (3.3-20)

e,- Jkv - j v sinh(ks) - s cosh(ks)I a 2 + v2

Consider now the limits of Ii, 12, and 13 as v-.0.

rn-e-ikh
lim I 2 [-j h sinh(ks) - s cosh(ks)l (3.3-21)
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lrn 1 2 - -7rk6(s) sinh(ks) + j k 9cosh(ks)

+j7r 26 2(s) sinh(ks) - j sinh(ks) n6()coshks)
2

(1.1-22)

lrn 13 = jir6(s) sinh(ks) + cos h(ks) (1.1-23)
V-0 3S

where (
2 3 )

6(x) - Dirac delta function =i 22

b a' <x ( <b

f 6(x-x 0 ) dx =1/2, a x <b ora <x b

a 0o, x <ao
6'(X)=d [6(x)] lin ~ [u 1 li[ Lm I "' 1

d X dx v-0 )xL 7 2 + 2- v- I- 7r (v 2+ 2) 2J

*In Eqs. (3.3-22) and (3.3-23), those terms containing the product

*6(s) sinb(ks) may be set equal to zero since from Eq. (13. 2-12) of Ref.

[231, x 6(x) -0.

The ilim F(s) is found by substituting Eqs. (1.3-2l)-(3.3-21) Into vq.
V-.O

(3.3-16).

Accordingly,

lmF(s) -2Ck e- f-i h sinh(ks) -s cosh(ks)j
im0 7r 2+

+ 2C sin(kh) F- k cosh (ks) i sinh (ks) rj3s) CaOh (Ues1
Lr 9 2

+ 2C k cos(kh) coslh(ks) (34
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The magnetic field intensity generated by the groundplane current, for

the case v-O, is found by substituting Eq. (3.3-24) into Eq. (3.3-9). The

total magnetic field Is explicitly determined by numerical evaluation of Fqs.

(3.3-1) - (3.3-5).

In the far-field, the factor X(s) and the parameters Al, A2., IR1 ,, In

Eqs. (3.3-4) and (3.3-5) reduce to a simpler form.

In the far-field when r -o , then a << r and s << r. Por these

conditions,

A- jB1  [r2 - sgn(z) 2ira cos 0 - a2cos2Al 1 /2 = r - sgn(z) ja cosQ,

a << r (3.1-29)

A2 - jB 2 [r
2 - sgn(z) 2.ra cos 9 - s2 cos 20] 1 /2 

- r - sgn(z) Is cosA,

s << r (1.3-26)

Equating real and imaginary parts In Eqs. (3.3-29) and (3.3-26)

A1  A2  r; a << r, s << r (3.-27)

B1 I sgn(z) a cos 9, a <<P (3.3-2R)

B2 = sgn(z) s cos 9, s << P (3.3-2q)

Substituting Eqs. (3.3-27), (3.3-28), (3.3-2q) into Fqs. (3.3-4) and (3.3-9),

the far-field magnetic field intensity due to the groundplane current, for

the case v-O, is given by

.'S. .3

-j.w exp(-Jkr) a

lii Hi'g) 0 1 i L 0F(sJ g(s) ds; far-fleld, ka < 1
0 (3.3-30)
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where

Ag(s) = sinh(ka cosP) sinh(ks) -sinh(ks cosA) sinh(ka)
sinh(ka)

and 1rn F(s) Is given by Eq. (3.3-24)
V0

Eq. (3.3-30) can be reduced further by utilizing the properties of the

Dirac delta function given by Eq. (B.2-7) of Ref. r23] and the relation

6()f(x) dx=-+

It follows that Eq. (3.3-30) reduces to

2A a- jkh

lrn 1H = r d g(s)1  - h sirih(ks) - s cosh(ks)l

+ sin(kh) -j cosh(ks) + I sn~a cos (kh) cosh(ks)
sks 2  sihks

0 ssinhkka

(3. 3-3 1)

where A 0and g(s) are defined In Eq. (3.3-3) and Eq. (3.3-30),

respectively.

The total far-field magnetic field Intensity generated by the

element and groundplane currents, for the case v -0, Is found by

substituting Eq. (3.3-3) and Eq. (3.3.-31) into Eq. (3.1-1). The

(total)resulting expression for lim Hs is In a form suitable for

computer evaluation. v
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The radiated power density s(9), directive gain d(O), and

radiation resistance R are found from Eqs. (2.2-4) and (2.2-7). These

*quantities are computed in program "BARDEEN" in Appendix BI. Computer

printouts of the relative power radiation pattern s(e)/sa, radiation
max*

resistance R, and the directive gain d(9) are given in tables (Al-i -
*' AI-13), (AI-14 - AI-25), (Al-26- AI-37), (Al-38 - Al-49) for

normalized element lengths h/= 0.25, 0.1, 0.040, 0.01, respectively,

and normalized groundplane radii = 0, 0.25, 0.50, ... 3.0 wavenumbers.

The radiation patterns have no appreciable change in shape for

groundplane radii 0 < ka$1.75 and resemble that of a dipole in free

space with peak gains approximately in the direction of the horizon

and with directivities less than that of a dipole whose total element

length is twice that of the monopole element length. For a

quarterwave monopole element, the directive gain on the horizon

deceases from 1.88 dBi for ka - 0 to 1.23 dBi for ka = 1.75.

In table 5 of Section 3.9, the radiation resistances obtained by

the integral equation method are compared with those obtained by the

method of moments for a quarterwave element and groundplane radii

0 < ka < 3.0. The values, obtained by the integral equation method,

differ from those obtained by the method of moments by less than

1% for 0 < ka < 1.75 and by less than 10% for 0 < ka < 2.75. These

results suggest that the integral equation method is accurate for

groundplane radii 0 < ka < 1.75 and is useful for 0 < ka < 2.75. It

is suspected that the best available results are obtained by the

integral equation method for 0 < ka < 1.0.
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3.4 Method of Moments, 0 < ka 514

In Section 3.3 it was shown that the integral

equation method, for determining the fields generated by the

groundplane current when the current distribution on the monopole

-4 element is initially specified, is accurate only for groundplane radii

less than approximately 1.75 wavenumbers. In Section

3.5 it will be shown that the algorithms utilized in the oblate

spheroidal wave function methoA are accurate only for groundplane

radii no smaller than 3.0 wavenumbers. The question arises: What

method is accurate over a range of groundplane radii which includes

the region 1.75 < ka < 3.0?

We have found that Richmond's method of moments(2) is the only

method in the present literature to be accurate over a range of

groundplane radii which includes the region 1.75 < ka < 3.0. Although

this method is primarily intended for use when the current

distribution on the monopole element Is initially unknown, this method

is also applicable when the element is specified to have a sinusoidal

current distribution.

This method is discussed in Section 4.2. In this method the

element is subdivided into N equal segments and the groundplane is

subdivided into M concentric annular zones of equal width. The

unknown current distributions on the element and groundplane are

expanded as a series of N + M overlapping sinusoidal dipole modes

(sinusoidal-Galerkin method) each with an unknown current

distribution. The N + M currents are determined by inversion of a

(N + M) x (N + M) matrix. The numbers of subdivisions, N and M, are
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limited by the cost of computation time and by the precision of the

,. computer. The accuracy of the solution can be decreased appreciably

~if either N or M is too small or too large. The method of moments

, converges to a solution when an Increase or decrease of unity in the

i' value of N or M does not appreciably alter the solution for input

impedance.

A particularly useful property of the sinusoidal - Galerkin method

is the sinusoidal current distribution which is imposed on the element

by setting Nffl.

The input impedance and radiation pattern of thin quarterwave

elements (b/ = 10- 6 , h/X - 0.25), for groundplane radii 0 < ka < 14

wave numbers, were determined by Richmond's method of moments by

utilizing MITRE programs "RICHMDI" and "RICHMD2" which are discussed

in Section 4.2 and listed in Appendix B5. With N=I, convergent

solutions were obtained for values of M given by:

M = 3, ka -f 0.25

M - 7, ka - 0.50

M = 16, ka =f 0.75, 1.0 ..... 8.5

M -f  3 ka, ka -f  8.75, 9.0,. ..... 14.0.

V.

~Computer printouts of the input admittance, groundplane current

iidistribution, rdainresistance, directive gain,anrdito

. patterns are given in Appendix A5.

, The input resistance and reactance -- as determined by the method

~of moments or methods which give similar results -- are plotted for

thin quarterwave elements on groundplanes of radii 0 < ka < 14 in
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figures 9 and 10 of Section 3.9. The directive gain on the horizon,

peak directivity, and elevation angle of the peak directivity given by

the computer printouts of Appendix A5 are plotted in figures 11 - 13

of Section 3.9.

The input impedance of thin elements with a sinusoLdal current

distribution were also determined for element lengths h/A = 0.1 and

0.025 and groundplane radii 0 < ka < 8.0 wavenumbers by utilizing

program RICHMDI with N=l. The radiation resistance of these elements

is compared in figure 14 of Section 3.9 with those of a quarterwave

element. In figure 14 the radiation resistance is normalized to the

value of radiation resistance of each element for ka = 0.

Values of the radiation resistance for quarterwave elements are

determined in Appendix A5 by matrix inversion (program RICHMD1) and

also by the far-field radiation pattern (program RICHMD2). The values

determined by both methods differ by less than 1% for small

groundplane radii and differ by less than 3% for the larger
groundplane radii.

The values of radiation resistance obtained from program RICHMD2

are compared in table 5 of Section 3.9 with the values obtained by the

integral equation method and the oblate spheroidal wave function

method. Richmond's method of moments gives useful results over the

entire range 0 < ka < 14 and gives good agreement with the integral

equation method for 0 < ka < 1.75 and with the oblate spheroidal wave

function method for 3.0 < ka < 6.5. Whereas the method of moments

gives useful results in the regions 1.75 < ka < 3.0 and 6.5 < ka < 14,

the other methods fail in these regions. For ka > 14, Richmond's

method of moments is not as useful because of increased computation

time and decreased accuracy. It Is suspected that for thin monopole
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elements the best available results are obtained by the method of

moments for 1.25 < ka < 2.75 and 6.75 < ka < 14. For relatively thick

monopole elements, Richmond's method of moments gives the best

available results for groundplane radii 0 < ka < 14 as discussed in

Section 4.2.

3.5 Oblate Spheroidal Wave Functions, 3.0 < ka < 6.5

* ~ Oblate spheroidal coordinates (see table I in Section 2.1) are

particularly convenient for handling the boundary conditions of the

magnetic field intensity on the groundplane. The requirement for

constant tangential magnetic field intensity across the upper and

lower hemispheres at the groundplane interface may be specified at all

points of the groundplane disc by a boundary condition at only the

oblate "radial" coordinate 4 = 0.

For groundplane radii of the same order of magnitude as the

excitation wavelength, Leitner and Spence (3 )- (5 ) utilized oblate

spheroidal wave functions to determine the groundplane current induced

by a thin quarterwave element with a sinusoidal current distribution.

Leitner and Spence give numerical values of the groundplane current

distribution, radiation resistance, and far-FLeld power density (at

constant element base current) for groundplane radii ka = 3, 4, 5, V14J2

wavenumbers. The complex current distributions on both the top and

bottom faces of the groundplane are reported.

In this section, we report the results of a computer program

"MONOPL," based on the theory of Leitner and Spence, which calculates

the directivity pattern and radiation resistance for groundplane radii

including the cases ka = 3, 4, 5, .,/2 wavenumbers. Our results are

consistent with (but not identical to) the results reported by Leitner

and Spence. The form of the solution, corrections, regions of

calculation validity, accuracy, and numerical results of program

MONOPL are discussed in the remainder of this section.
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Form of Solution

For a quarterwave monopole (h =X/4), the far-field power density

s'(7) and radiation resistance R, expressed in oblate spheroidal wave

functions, are given with reference to figure 1 of Section 2.1, by( 5 )

= [I2 (O)/87T2r 2 ] (p 0 /Eo)1/2 4 0B Uj1 ()7)12 (3.9-1)

1/2 4 0

R = (1/270 (1o E C Ny 1 BI' ohms (3.5-2)

where

(P 0o E) 1/2 = wave impedance in free-space (ohms)

c ka = 27ra/X = groundplane radius (wavenumbers)

u21(77) = angular oblate spheroidal wave function of

order one and degree

~I

N11 f u 2 2 7)d77 = norm of u,1 (77)

2w.,( ) = (1 + 2)1/2 2v£1 (4)

B= (-I)- ( /2 V N1l ( v 1 (O)

The reader is referred to reference [31 for a definition of the oblate

spheroidal wave functions "n, qil, v 2 (4), and 2 v£1 (4).
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Substitution of Eqs. (3.5-1) and (3.5-2) Into Eq. (2.2-4) yields the

directivity d'(77) given by

00 002
d-()) = 2 2, 2eII (3.531)

Corrections

Problems were encountered in generating the eigenvalues of the

oblate spheroidal wave functions. These problems were narrowed down

to the continued fractions that generate the eigenvalues. These

continued fractions were derived from the recurrence relations which

In turn come from the differential equation. A discrepancy was

discovered between our derived continued fractions and the published

continued fractions 131 The corrected continued fractions appear

below.

j - even

= -(i+rn) (e-rn)E22
£m 2(2j2-1)+y + (2+r-2) (2-m-2) C2

im4(2i-3)-y + (i+rn-4) (g-m-4) CE
2m 6(2i-5)+y +

2m

+ (i+rn+2) (i-m92) fE 2
2(22e+3)-y + (1+,m+4) (2-m-4) C

A m 4 (22+5)- m + (i+m+6) (i-m+6) fE
2m6(21+7)- y +

'p-i

57

.j I



-jIJr. WIT -W V- -y -W --- 'IJT~

S-z...

£- m odd

- -(+m-l) (i-n-) C 2

zm 2(2i-l)+y + (i+m-3) (i-m-3) E
4(2-3)+Y + (U+m-5) (i-m-5) E

6(2-5)+,r +

+ (+m+l) (U-m+l) C 2

2(21+3)-y + (£+m+3) (-m+3) E2
4(21+5)- Y m  + (£+m+5) ( -m+5) E 2

6(2,e+7)- Y +

S.> (3. 5-5)
The elgenvalues can also be expressed in terms of a series expansion,

which has the form

00 jm 2k
= fk E (3.5-6)

k=1

The first two terms in this expansion were checked against the continued

fractions and were found to agree. This is important, since the continued

fraction method by which values of the eigenvalues are obtained depends upon

the accuracy of the roots Ym in equation (3.5-6).

Regions of Calculation Validity
- .

A lower bound on the value of f = 27ra/X for which the calculations are

valid depends upon the following equations [see Eqs. (34) and (48) of

Ref. 31:
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00

v i  Ia n for 4=7T12E (3.5-7)
n n,

and

(1+42 )-1/2 E o b n1 l n for 4= 7T/21 (3.5-8)

n=O, I

where the prime indicates summation over alternate n, starting with n=O if

(2- 1) is even, with n=l if (2- 1) is odd.

Eq. (3.5-7) is the expression for the first order radial spheroidal

wave function of the first kind. Eq. (3.5-8) is used in another

expression to obtain the first order radial spheroidal wave function

of the second kind. As E becomes small, 4 becomes large, so more
terms are needed in Eqs. (3.5-7) and (3.5-8). In theory, Eq. (3.5-7)

and (3.5-8) converge for all real values of 4= 7T/2E. Computationally,

however, because of the finite accuracy of the computer, Eqs. (3.5-7)

and (3.5-8) will not converge for all real values of

=7rT/2f. To be on the safe side, we can restrict 4 so that 4 is less
than unity. With this assumption, we get the computational constraint

e=7r/2f < 1 which implies a lower bound on 4 given by C >7r/2 1.57.

An even tighter lower bound on f is obtained by observing what

happens in the algorithm that is used to obtain the eigenvalues. This

algorithm is not well behaved for values of C less than c = 2.5.

Therefore c is lower bounded by C > 2.5. For accurate values of

radiation resistance, c is lower bounded by f > 3.0 (see table B of

Section 3.9).

'p.
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An upper bound on E is obtained by observing what happens in the

continued fraction algorithm that is used to obtain the eigenvalues.

For values of E greater than 6.5, the series expansion for the

eigenvalues, given by Eq. (3.5-6), does not give an accurate enough

answer using only the first four terns. The resulting values for the

eigenvalue are far enough from the correct eigenvalues to cause the

continued fraction algorithm of Eqs. (3.5-4) and (3.5-5) to converge

to a root which is not the eigenvalue. As a consequence, erroneous

values of radiation resistance can be obtained for E> 6.5 (see table 5

of Section 3.9).

Consequently, the range of f for which Leitner and Spence's method

of oblate spheroidal wave functions is useful is 2.5 < f < 6.5. It is

suspected that the best available results are obtained by the method

of oblate spheroidal wave functions for 3.0 < f < 6.5.

& Accuracy

There are many equations involved in the calculation of

directivity and radiation resistance. Some of these equations involve

series expansions. When we varied the number of terms in these

series, the radiation resistance was found to vary only in the fifth

or sixth significant figure.

Another problem that was mentioned previously was the accuracy by

which Eq. (3.5-6) computes the eigenvalues. Because of computational

reasons, only the first four terms in Eq. (3.5-6) were used. Because

of this, a raw eigenvalue is computed using Eq. (3.5-6), which is then

used as an initial guess in the continued fractions. The continued

fractions have many roots in y, . The number of roots is dependent
Lm

upon the number of fraction terms used in the continued fraction.

Only one of these roots however can be the eigenvalue. If the raw

elgenvalue is far enough from the correct elgenvalue then the

continued fraction will converge to a root which is not an eigenvalue.

This will produce wrong results.
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The eigenvalues that were computed were checked against published

values (24 ) . The computed values were found to be within the

percentage error of the published values.

The computed values of directivity on the horizon and radiation

resistance, for different values of groundplane extent, were found to

agree with the relationship given by Eq. (2.3-3) to at least five

places after the decimal point for the free space wave impedance

77 = 376.73037 ohms.

Numerical Results

The far-field power density s'(7), radiation resistance R, and

directive gain d'(7) of quarterwave elements given by Eqs. (3.5-1),

(3.5-2) and (3.5-3), respectively, were numerically evaluated by

program MONOPL written in FORTRAN 77 language for use on a DEC

PDP-I1/70 computer. The program listing is given in Appendix B3.

Numerical values were obtained for the cases 2.5 < ka < 42.

The computed eigenvalues are given in table 2. Computer printouts

of the directivity patterns are given in Appendix A3 for ka - 3, 4,

5, .J2. The patterns are plotted in figure 8 of Section 3.9 as polar

graphs on the same linear scale. In these plots the total radiated

power is held constant.

The directional gain on the horizon, radiation resistance and peak

directivity are summarized in table 3.
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3.6 Scalar Diffraction Theory, Geometric Theory of Diffraction,

6.5 < ka < 0o

For an element on a groundplane of sufficiently large radius,

Tang (6 ) utilized a scalar theory of diffraction to calculate the

far-field elevation pattern. For elevation angles near the horizon

(9r/2) the far-field magnetic field intensity is determined by

linear extrapolation to the result for the element itself given by

Eq. (3.2-10) with 0- 7r/2 rad. Tang's method for the radiation pattern

is more accurate than that obtained by the variational method of

Section 3.7 because it includes an additional term in the expansion

for the total magnetic field intensity. Since the variational method

is useful for groundplane radii as small as ka=30 wavenumbers, Tang-s

method should be useful for even smaller groundplane radii provided

ka >> 1.

The geometric theory of diffraction (GTD) is another method which

is applicable for sufficiently large groundplane radii. In GTD, the

fields are determined by ray optics (an incident ray plus a reflected

ray) and diffraction by the edge. However, the effect of edge

diffraction is only approximated because in GTD the edge is treated

point by point as though it were a straight knife edge of infinite

extent. For this reason, GTD may be applied to an element at the

center of a circular groundplane only when the groundplane is of

sufficiently large radius. The method of GTD is reviewed by

Balanis (2 7 ) who also gives a computer program for calculating the

-diffraction coefficient.

In Section 4.3, the method of moments combined with GTD yields

'YA results for input impedance which are useful for groundplanes of radii

ka > 6 wavenumbers and are accurate For ka > 8. Therefore, when the

element current distribution is constrained to be sinusoidal, the

method of GTD is expected to give useful results for groundplane radii

ka > 6.5 wavenumbers over which range the niethod of oblate spheroidal

wave functions does not give useful results.
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3.7 Variational Method, 30 < ka < oo

For an element on a groundplane of very large radius

(ka > 30 wavenumbers), differences in the input impedance and

radiation pattern from that for a groundplane of infinite extent may

be determined by utilizing a variational method of Storer(7 )'(8 )

With reference to figure I of Section 2.1 and for a sinusoidal

current distribution on the element given by Eq. (3.1-1), the input

impedance difference is given by Eq. (20) of [71 as

Zi - -jY7exp(j2ka) FI - cos(kh) ]2 11 + exp[1(2ka + 37r/4))
- 0 4asn(kh) j 1 + (47Tka) 1 /2

ka > 30 (3.7-1)

where

Zin = input impedance for an element on a groundplane of

radius ka wavenumbers (ohms)

Z00  input impedance for the same element on a groundplane

of radius ka =00wavenumbers (ohms)

= wave impedance in free space = 376.73037 ohms

Since (47Tka) 1/2 >> 1 for ka > 30, the input resistance difference

Rin - R 0and input reactarce difference Xin - X are given

approximately by

R - ;[ 1 - cos(kh) 12 sin(2ka) ka> 10in 00 sin(kh) 47Tka (3.7-2)

- [ 1 - cos(kh) cos(2ka) ka > 30
in 00 sin(kh) 47Tka 17 (37-)
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The maxima, nulls, and minima of Rin - R occur for values of ka given

approximately by

(2N + ) (7/2) (maxima)

ka = N (7r/2) (nulls) N = 0,1,2

(2N +-- )(7/2) (minima)

(3.7-4)

The input impedance Zin - Zo given by Eq. (3.7-1) io calculated in

computer program "MONOSTOR" whose listing is given in Appendix B-4.

For very thin quarterwave elements, Ro= 36.54 ohms and

Xo= 21.26 ohms (see Section 3.8). The numeric dLrectivity on the

horizon, d(7r/2), is related to the radiation resistance R - Rin by

Eq. (2.3-2). Computer printouts of the maxima and minima of Rin - RO ,

Xin - X00are given in Appendix A4. For very thin quarterwave

elements, Appendix A5 also gives computer printouts of R in' Xin'

d(7r/2), and D(lr/2) 1 10 log 10 d(7r/2).

Differences in the far-field radiation pattern from that for a

groundplane of Infinite extent are given in (8]. For the waveform of

Eq. (2.1-2) and an element sinusoidal current distribution T(z) (see

figure 1 of Section 2.1), the difference in the far-field magnetic

field intensity is given by Eq. (6) of [8] as

.,6
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H - Hsika=-= sgn O[ sj 1(0) exp(-Jkr) [1-cos(kh)]_

L sin(kh) 27rr - 2 7r V/' J
rf exp[-ka(l-sin@ cos) Cos$ , ka> 30

0 (3.7-5)

where
H$ = far-field magnetic field intensity for an element on a

groundplane of radius ka wavenumbers (amp/m)

HiOlk = far-field magnetic field intensity for an element on a

groundplane of infinite extent (amp/m)

+1, 0 < </2

sgn G 0

-I, 7/2 <9 7T

The magnetic field intensity H $ka 0is given by (see Section 3.R)

Hj 1(0) exp(-Jkr) cos(kh cosO) - cos(kh) 0 < 0 < f/7

H sin(kh) 27rr [ sin A

0, 7r/2 < e < 7* ~pa~oO~,. ,~/29 ~(3.7-6)

The far-field electric field intensity EA .7H$ where H$ is given by

Eq (3.7-5) and 17 is the free-space wave impedance.

One of the distinguishing features of the far-field radiation

pattern for groundplane of large radii is the occurrence of a

fine-structured lobing pattern, Hs -- Hsika, superimposed on the

pattern for a groundplane of infinite extent. The lobing pattern,

given by Eq. (3.7-5), is symmetrical about the horizon (expect for a

phase shift of7rrad) with the most prominent lobes near the zenith and

nadir directions. The nth maximum of the lobing pattern in each

* . quardrant decreases with increasing values of n where n-I corresponds

to the lobe nearest the zenith or nadir direction.
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The lobing structure is characterized in [81 by the elevation

angle 9 nof the maxima, the angular separation 64 between lobes,

the angle 0 within which all prominent maxima occur, and the number
max

N of prominent lobes. The elevation angle 9 n in radians is given

approximately by

0.59 (7T/ka), n=1

n V n ka > 0 (3.7-7)

1(n + 0.75)(7r/ka), n - 2, 3, .... N

The angular separation AG in radians is given approximately by

1.16 (7r/ka), n=l

7 9 , ka > 30 (3.7-8)
ikaf3a

/ka, n=ff 2, 3, ....N

Prominent lobes are defined in [8] as lobes whose maxima are less than

one-fourth the amplitude for that of a groundplane of infinite extent.

The angle 0 in radians is given approximately by
. max

13 1 -2/3

0max z 1.87 (7r/ka) [ sin(kh , ka > 10

The number N of prominent lobes is determined by

9) = 91 + (Aon + (N-2)(4AR 1) , ka > 30
max- -- (3.7-10)

where O1, 0, and Qmax are given by Eqs. (3.7-7) - (3 .7-Q), respectively.

Solving for N,

N = [9 /(7r/ka)] -0.25 = 1.87(7r/ka) -2 /  -0.25, ka > I0
max

(3.7-1)

68

4 "-- 4



3.8 Method of Images, ka - 00

For the idealized case of a monopole element mounted on a groundplane

of infinite extent and of infinite conductivity, the monopole antenna may

be modelled by the method of images as a dipole with one-half the input

impedance and double the peak numeric directivity of the dipole.(29 ) The

infinite groundplane prevents monopole radiation into the hemisphere below

the groundplane but allows a radiation pattern identical to that of the

dipole in the upper hemisphere.

In this section, it is assumed that the current has a waveform given by

Eq. (2.1-2) and a current distribution I(z) on the element and its image

(see figure 7) given by

[I(O)/sin(kh)] sin[k(h-z)], 0 < z < h (element)

1(z) = (1.8-l)

II(O)/sin(kh)] sin[k(h+z)1, - h < z < 0 (image)

The near-fields, far-fields, and input impedance of an electrically-thin

element on a groundplane of infinite-extent are summarized in the remainder

of this section.

Near-fields

The exact magnetic field intensity H - u Ho and electric field

intensity E u E + u E for an infinitely thin element are given with

reference to Fqs. (7-15) and (7-17) of f251, as

. j T(O) exp(-IkR ) + exp(-IkR ) - 2 cos(kh) exp(-Ikr)]

H- 47Psin(kh) 1 2n~

0, z < 0~(3.R-?)

69

.10 !S



WW111 PT ".1 -T W-W -) JL4~WWV J~ W ,VJ 71 v~~I I v~~' W I- . x ~ ~

z)
Sh

"'IP

'I IZ

h

Figure 7. Method of Images for a Monopole Element at the Center
of a Circular Croundpiane of Infinite Extent
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1 171(0) (z-h) exp(-JkR ) (z+h) exp(-JkR )

S47rp sin(kh) RI  R?

E = - 2z cos(kh) exp(-Ikr) > (3.R-3)P r
0, z<r

-J )7 1I(0) [exp(-.JkRl1 exp(-IkR 2

47r sin(kh) R R

F: E =O - 2 cos(kh) exp(-Ikr) 2(1.-4)

L, z <>O

where

[p2 + (z-h)2 1/2

R= [p2 + (z+h)2 1/2

The magnetic field intensity at the top and bottom surfaces of the

groundplane are given by Eq. (3.8-2) as

H I = 1 10) [x(JR)-csk)ep-k
zfO + 2 7TP sin(kh) " 3

top of groundplane (3.8-5)

HIz=0_ = 0, bottom of groundplane (3.8-6)

where

R 3 = (P h2  /2

The incremental roundplane current AT(P) contained within a differential

azimuthal angle d$ may be dE ermined from Eqs. (3.8-5), (3.R-6Y, and

Ampere's circuital law applied to a closed path along the top and hottom

surfaces of the groundplane along arc lengths within d . Since the

groundplane current 1(P) is defined to be positive In the positive Pdirection

* ". (see figure 1 of Section 2.1), the path is taken in the clockwise direction.

71I',
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Accordingly,

AI(p) - u Htop u* Hbottom) pd= [-Iz=O+ z=_p d

(3.P-7)

The total groundplane current T(p) is given by

2 7r

i%("  f d I(P) dO = 27Tpf-H$z=O+ + H z=n)-

0

j T(0) [cos(kh) exp(-Jkp) - exp(-IkR )1 (3.8-8)
sin(kh)

Eq. (3.8-R) agrees with that given by Eq. (33) of rli.

Far-fields

For the Far-field conditions given by Fqs. (3.2-7) and (3.2-8),

Eqs. (3.8-2) - (3.8-4) reduce to the far-fields !-=u H and E-u,,F=u7T?7 where,
with reference to Eq. (4-62) in r251, R $ is given by

j 1(0) exp(-Jkr) cos(kh cosO) cos(kh) 1 < r/?
sin(kh) 27rr sinO 0 - -

1 0, 7/2 < 0 < 7_

The time-averaged radiated power density s(A) Is given by
,r.

-711( ) 12 f(R)
2 2 0 < < r/2

8 2r2 sin (kh)

0, 7r/2 < A < (r

where

W f() = cos(kh cosA) - cos(kh)
=e4 sing I

The direction of maximum radiated power is = 7T/9 rad.
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The input impedance of a monopole element of length h on a groundplane of

infinite extent is one-half that of a dipole of total length 2h In free svace.

Accordingly, the radiation resistance R of an infinitely thin element on a

groundplane of infinite extent is given by fcompare with Fqs. (4-70) and

(4-79) in [2511

17I Cin(2kh) + sin(2kh)rSi(4kh) - 2 Si(2kh)1
47sin2(kh )

+ + cos(2kh)[2 Cin(2kh) - CIn(4kh)j ,Kffil)
2 1 (1.8-11)

where Si(x) and Cin(x) are the sine integral and modified cosine integrals,

respectively, which are defined following Eq. (3.2-32). Eq. (3.8-) is also

approximately valid for thin elements (kb << 1). [For example, compare

Eqs. (3.2-33) and (3.2-35) for a thin monopole element in the absence of a

groundplane.]

Substituting Eqs. (3.8-10) and (3.8-11) into Eq. (?.2-R), the numeric

directive gain d(e) is given by

d(G) 4 B (3 .P-1 2)B

where
1

B Cin(2kh) + - sin(2kh)fSi(4kh) - 2 SI(2kh)]

2

+ 2L cos(2kh)[2 Cin(2kh) - Cin(4kh)]

Fnr a quarterwave monopole element (khb7r/2), Eqs. (3.R-11) and (3.8-i?)

reduce to

.r1
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RCin(27r) ff 36.5395 ohms; kh=-7/2, b=OR = 4f 2 "(3.R-13)

2

f~)= cos 2[(7r/2) cosA] kh=7r/2 (.-4

sin 2 (

d(9) = 4 cos 2[(7r/2) cosS] 2 kh=-/2l20 Cin(27T)
sifl 2 ((3.8-15)

The peak numeric directivity d(7r/2) = 3.2818 corresponding to D(7T/?) =

10 log 10 d(7r/2) f 5.1612 dBi. The directional gain is plotted in

figure 8(f) of Section 3.9.

For an electrically short monopole element (kh << I) and

77 ;1207r ohms, Eqs. (3.8-11) and (3.8-12) reduce to

° o° 2

R = 10 (kh)2, (kh) << 1 (3.8-16)

f(e) = (kh)4 sn2, (kh) << 1 (3.8-17)4

d(8) = 3 sin 8, (kh) << I (3.8-18)

The peak numeric directivity d(7r/2) = 3.0 corresponding to P(7r/2) f

10 log 10 d(7r/2) = 4.7712 dBi.

'4? "  
Input Impedance

The input resistance Rin is given by Eq. (3.8-11) which is exact

for an infinitely thin element and approximately correct for thin

elements provided that the element current distribution is sinusoidal.

The input reactance Xin for thin elements (kb << 1) is given by

[compare with Eqs. (7-33) and (7-30) in [251
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77 i(2kh) + cos(2kh)[Si(2kh) - Si(4kh)]
Xin 47rsin (kh)

sin(2kh)[ln(h/b) - Cin(Zkh) + - Cin(4kh) + - Cin(kb 2/h)]
2 2 (3.8-19)

For a quarterwave element, in the limit b-O, Eq. (3.8-19) gives an

input reactance Xin ' 21.2576 ohms. In Eq. (3.8-19), Xin=0 for

element lengths slightly less than kh = (2n-l)(7r/2), n=l, 2, 3, ... ,

which are approximately one-half the resonant lengths for a monopole

element with no groundplane [see Eq. (3.2-38) ].

3.9 Summary of Results

In Section 3 a sinusoidal current distribution is assumed on the

monopole element. Although such a current distribution is never

exactly realized even for an infinitely thin element (see Section 3.1),

it is a useful approximation for sufficiently thin elements. For

example, for a quarterwave element of radius b=lO-6 X , the input

impedances computed by determining the actual element current

.distribution and that computed by assuming a sinusoidal current

distribution differ by no more than 5% for groundplane radii

ka - 6 - 14 (compare table 7 of Section 4.5 with tables A2-24 - A2-42

of Appendix A). The assumption of a sinusoidal element current

distribution allows for models which are computationally simpler in

determining input Impedance and radiation patterns than the models

which follow in Section 4. The results of these simpler models are

summarized in this section.

The electrical properties of electrically-short and quarterwave

4.. monopole elements on groundplanes of zero, large, and infinite extent

are compared in table 4 with the corresponding properties of
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electrically-short and half-wave dipoles. The peak directivity of a

quarterwave monopole is 1.88 dBi and 5.16 dBi for groundplanes of zero

and infinite extent, respectively. The directivity on the horizon of

a quarterwave monopole is 1.88 dBi and -0.86 dBi for groundplanes of

zero and very large but finite extent, respectively. Slightly smaller

directivities are obtained for electrically-short elements than for

quarterwave elements.

The radiation resistances obtained by different methods are

compared in table 5 for a thin quarterwave element on a groundplane of

radius 0 < ka < 8.5 wavenumbers. The suspected best available results

are obtained by the integral equation method for 0 < ka < 1.0, by the

method of moments (N-I) for 1 < ka < 3.0, by the oblate spheroidal

wave function method for 3.00 < ka < 6.5, and by the method of moments

- (N-i) for 6.5 < ka < 14. The results obtained by the method of

moments is in good agreement with the suspected best available results

obtained by other methods.

The numeric directive gain patterns of a quarterwave element on

groundplanes of radii ka - 0, 3, 4, 5, V142, and 00 wavenumbers are

plotted in figure 8. These polar graphs of directive gain should not

be confused with the polar graphs of radiated power density plotted in
Ref. [5] for constant base current. It should be noted that the peak

directivity and direction of peak directivity are not monotonic

functions of the groundplane radius.

The input impedance of a thin quarterwave element is plotted in

figures 9 and 10 for groundplane radii 0 < ka < 14 wavenumbers. The

input resistance varies between 19.4 and 46.1 ohms and asymptotically

approaches 36.5 ohms for increasingly large groundplane radii. The

input reactance varies between - oo and +32.5 ohms and asymptotically

approaches + 21.3 ohms for increasingly large groundplane radii.
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Ui Radiation Resistance (ohms)

Normalized
Groundplane Radius, Integral Equation Oblate Spheroidal Moment

2r a/A Method Wave Function Method Method

0 *19.43
0.25 *19.48 19.49
0.50 *19.62 19.62
0.75 *19.86 19.86
1.00 *20.23 20.21
1.25 20.76 *20.71
1.50 21.51 *21.25
1.75 22.59 *22.44
2.00 24.15 *23.89
2.25 26.46 *25.99
2.50 29.95 27.32 *29.02

2.75 35.44 31.92 *33.24
3.00 44.60 *37.48 38.62
3.25 *43.01 44.12
3.50 *46.06 47.57
3.75 *45.55 47.35
4.00 *42.67 44.43
4.25 *39.23 40.58
4.50 *36.23 37.13
4.75 *34.00 34.46
5.00 *32.57 32.68
5.25 *31.93 31.70
5.50 *32.13 31.53
5.75 *33.23 32.26
6.00 *35.23 34.04
6.25 *37.85 36.94
6.50 *40.33 40.56
6.75 30.12 *43.53
7.00 30.09 *44.20
7.25 *42.30
7.50 *39.10
7.75 *35.96
8.00 *33.50
8.25 *31.88
8.50 *31.16

% *SUSPECTED BEST AVAILABLE RESULT

Table 5. Radiation Resistance of a Thin Quarterwave Elerent at

the Center of a Circular Groundplane of Radius
0< ka <8.5 Wavenumbers. (Sinusoidal current distribution

assumed on element.)
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Figure 8 Elevation Directive Gain Patterns, for Any Azimuthal
Direction, of a Quarterwave Element Mounted on a
Groundplane of Radius a. (The patterns are polar graphs
on the same linear scale.)
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The directive gain on the horizon, peak directivity, and elevation

angle of the peak directivity of a quarterwave element are plotted in

figures 11 - 13 for groundplane radii 0 < ka < 14 wavenumbers. The

directive gain on the horizon varies between +1.9 and -1.9 dBi and

asymptotically approaches -0.86 dBi for increasingly large but finite

groundplane radii. The peak directivity varies between +1.0 and

+5.3 dBi and asymptotically approaches +5.2 dBi for increasingly large

groundplane radii. The elevation angle of the peak directivity varies

between 33 and 90 degrees and asymptotically approaches 90 degrees for

increasingly large groundplane radii.

* The radiation resistances of thin elements of length h/A -0.25,

0.1 and 0.025 for groundplane radii 0 < ka < 8 wavenumbers are

compared in figure 14. The radiation resistance of each element is

normalized to its radiation resistance for a groundplane of zero

W7 extent. The normalized radiation resistance, as a function of

groundplane radius, is approximately independent of the element

length. For an electrically-short, thin element (htA <_ 0.1) whose

length is small or comparable to the groundplane radius, the input

reactance (not shown) is approximately independent of groundplane

radius.
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SECTION 4

MODELS IN WHICH THE CURRENT DISTRIBUTIONS ON THP MONODOLF

ELEMENT AND GROUNDPLANE ARE BOTH INTTIALLY UNKNOWN

4.1 Boundary Conditions

In Section 3 the total field at an arbitrary field point could be

expressed simply as the vector sum of an incident field and an induced

field [see Eq. (3.1-12)1 because the incident field was svecified from

the initially known current distribution on the monopole element. Tn

this section, such a procedure is not possible because the current

distributions on the element and groundplane are both Initially

unknown. Instead, in this section, the total field is determined by

representing the unknown current distribution on either the element,

groundplane, or both by a finite series of overlapping modes wtth

unknown current amplitudes. The current amplitudes are determined by

matrix inversion subject to boundary conditions comprising current

constraints and the excitation voltage across the coaxial line feed.

The antenna geometry is shown in figure 1 of Section 2.1. The

current waveform is given by Eq. (2.1-2). The models which follow in

this section are based on the current characterization and circuit

idealization in figure 2(c) of Section 2.4.

The coaxial line feed and excitation voltage, which is not

explicitly shown in figure 1, is characterized in figure 1(c) by a

surface magnetic current density (magnetic frill) M$ which sits on top

of a thick groundplane of radius b where bI is the radius of the

outer conductor of the coaxial line feed. The magnetic frill M$ is

defined over the groundplane by Fq. (2.4-8).

87



Constraints on the various circuit currents of figure 2(c) are

given by Eqs. (2.4-3) - (2.4-7). These constraints, together with the

magnetic frill, constitute the boundary conditions on the current

amplitudes.

4.2 Method of Moments, 0 < ka < 14

When the element and groundplane current distribution are

initially unknown, the current distributions may be determined by a

sinusoidal-Galerkin moment method employed by Richmond(2 ). The

antenna geometry is shown in figure 1 of Section 2.

In the moment method, the element is divided into N equal segments

(see figure 15) of length d' given by

d' - h/N, N is a positive integer (4.2-1)

where h is the element length. The groundplane is divided into M

concentric annular zones (see figure 16) of width d given by

d - (a-b)/M > bI - b) M is a positive integer (4.2-2)

where a is the groundplane radius, b is the element radius, and bI is

the radius of the outer conductor of the coaxial line feed. The

groundplane extends from the coaxial line inner conductor because of

the equivalent circuit representation in figure 2(b) of the coaxial

line excitation. The element current distribution 1(z) and

groundplane current distribution l(P) are the sum of the current

distributions on each element segment and groundplane annular zone,

respectively, and are given by

N

I(z) I n(z) (4.2-3)

n-I

.88
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Figure 15. Element with N Equal Segments of Length d'
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Figure 16. Groundplane with M Annular Zones of Width d
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M

I(p)= x"-] (4.2-4)
rn-1

where In(z) and I-(P) are the current distributions on the n th segment

and mth annular zone, respectively.

In the sinusoidal Galerkin method, the current distribution In(z)

on the nth element segment is approximated by

In sin[k(nd'-z)] + In+l sin{k[z-(n-1)]d'}

n(Z) sin(kd')

(n-l)d" < z < nd'; n-1,2,3, ....N
(4.2-5)

where In - I(z=O) and IN+l = 0.

The current distribution 1'(p) on the mth annular zone Is approximated
m

by

I' sin{k[md+b-p]} + I- sin{k[p-(m-1)]d-b}
1-(p) m r- i~~-ml dbm sin(kd)

b + (m-l)d < p < birmd; in-1, 2, 3, ..
(4.2-6)

where I' - -InI - -I(z-0) and I +1 " 0.

The current distribution on each segment and annular zone is

therefore the sum of two overlapping dipole modes except for the

segment and annular zone adjacent to the base of the element. The

"base" mode may be thought of as a dipole mode comprising an element

monopole mode (n-1) and a groundplane monopole mode (m-1) with

terminals along the circumference of the base of the element. The

element and groundplane dipole modes are functtonally tied to each

other by means of the base mode amplitude constraint I -I,

I(z-O).
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The element and groundplane total current distributions are

represented in Eqs. (4.2-3) - (4.2-6), as a series of N+M overlapping

sinusoidal dipole modes with N+M unknown complex current amplitudes.

The N+M amplitudes are determined in Richmond's moment method by

inversion of a (N+M) x (N+M) matrix subject to the boundary conditions

discussed in Section 4.1. The constraint In= -I- reduces the

matrix size to (N+M-I) x (N+M-1).

The numbers of subdivisions, N and M, are limited by the cost of

computation time and by the precision of the computer. The accuracy

of the solution can be decreased appreciably if either N or M is too

small or too large. The method of moments converges to a solution

when an increase or decrease of unity in the value of N or M does not

appreciably alter the solution for input impedance.

A method of moments computer program for a monopole element at the

center of a circular groundplane in free space was obtained from

Prof. Richmond of Ohio State University. The program computes the

input impedance and the N+M complex current amplitudes on the element

and groundplane for a voltage input V(O) - 1 volt. The program,

written in FORTRAN IV language and in single precision, was edited and

converted by The MITRE Corporation to double precision for use on a DEC

VAX 11/780 computer. A listing of the MITRE version, designated

"RICHMD1", is given in Appendix B2.

Our experience with this program suggests the following

constraints on the use of the program. At least double precision is

required to give convergent results. Meaningful results were obtained

for element radii b/X > I0- 10 and groundplane radii ka > 0.25. As a

rule of thumb, N-2-3 kh and M=2-3 ka give reasonably accurate and
"p.

convergent results. The amount of central processing unit (CPU) time

on the VAX 11/780 computer is approximately 2 minutes for N+M = 20, 6
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minutes for N+M=30, 34 minutes for N+Mf60, and 50 minutes for N+M-75.

It is most likely that the CPU time could be considerably reduced if a

more efficient method than the Crout method were employed for matrix

inversion.

The versatility of a sinusoidal - Galerkin method of moments is

illustrated by the case N-1. A sinusoidal current distribution is

imposed on the element by setting N=1 [see Eq. (4.2-5)].

The element and groundplane current distributions obtained from

program RICHMD can be utilized to obtain the far-field radiation

pattern in the following manner.

The magnetic field intensity H(P) at a far-field point P(r, 0, *)
and for an eJ t waveform is related to the magnetic vector potential

A(P) by

H(P) - j(1/1l)(Jr x A(P) (4.2-7)

where u is a unit vector in the radial direction and 17 is the

free-space wave impedance. The magnetic vector potential A(P) at the

far-field point P resulting from a current source point Q(x', y', z')

- Q(b, b, z') on the element or a source point Q(p', 7r/2, 4') on the

groundplane (see figure 4) is 
given by

(26 )

A(P) - (//47 fJ(Q) exp(-JkPQ) (1/PQ) dv

[/U° exp(-Jkr)/47rr] J(Q) exp(Jk~r. OQ) dv (4.2-8)

V
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where

i - = [ r .OQ + x'+y'+Z' r- Ur. OQ, r >> (x 
2  2 1/2

u .OQ = x' sine cos + y' sine sin$ + z" cos+

u~ o =permeability of free space = 47rx 10- 7 henry/r.

J(Q) = source surface current density at an arbitrary source point Q

on either the element or groundplane (amp/m)

r = OP - radial distance between the origin 0(0,0,0) and the

far-field point P(r,O ,0)

dv = differential surface area containing the current source

points Q (m2 )

Substituting Eq. (4.2-3) into Eq. (4.2-8), the far-field magnetic

field intensity H$e) resulting from the monopole current distribution

is given by

H(e) j exp(-Jkr) sin h N
= 47rr s In (z) exp(jkzocosO) dz"

0o n1 n

- j exp(-Jkr) 
N

47rr sine sin(kd') IEI n expncos 1

[l-cos(kd') cos(kd'cosO) - cos e sin(kd')sin(kd'cos9)

+ J cos(kd') sin(kd" cosO) - j cos 0 sin(kd') cos(kd'cos@)]

-U2 1n exp[j(n-2) kd-cose] cos(kd') cos(kd'cos e)

+ cos 9 sin(kdo) sin(kdocos 9) - I + j cos(kd') sin(kd'cos 9)

- j cos e sin(kd') cos(kd'cos 9) (4.2-9)
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Substituting Eq. (4.2-4) into Eq. (4.2-8), the far field magnetic

field intensity H$ resulting from the groundplane current

distribution is given by

() -j exp(-jkr) a y2 7r M x~kYoQ-)
H E : I'(P') exp[JkP'cos(4-$)]

4 7rr fm1 2-

cos 9 cos($'-$) d$' dp"

(4.2-10)

Eq. (4.2-10) is not readily evaluated when Eq. (4.2-6) is substituted

into it. An approximate simplified solution can be found when each

1W annular zone of the groundplane is subdivided into X smaller annular

zones of width AP= d/X so that the current distribution in each

subdivided zone is almost constant and approximately equal to its

average current. The total number J of subdivided annular zones on

the entire groundplane is given by

J = XM (4.2-11)

The average current I in the uth subdivided zone is given by
u

u AP4-b I- sin[k(md+b-p] + I1+, sin{k[P- (m-l)d - b]}

u AP (u-l)AP+ b sin(kd)

[b+(m-I)d]<P<(b+md) (4.2-12)

The current distribution l(p) on the groundplane is therefore given

approximately by

J

l(p)- 1 I (4.2-13)

u= 1
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Substituting I u(p) for Im (j) in Eq. (4.2-10),

• , a 27T

1(g)": -j exp(--k-f 1 1u(P')exp[jkp'cos(0'-$)] cosO cos(4)-)dj'dp"

$) 47rr 00 r
0 0

exp(-Jkr)cos 0 ) }u
47rr sinO E Iu(/P') Jolk sinO[(u-l)AP +b]} - J 0 {ksine[u AP+b]

u I 1(4.2-14)

where J is the Bessel function of the first kind, of order zero.

(total)
The total far-field magnetic field intensity H$oa is given by

H (total) H (e) + H(g) (4.2-15)

weeH(e) (g)
where H eand H are given by Eqs. (4.2-9) and (4.2-14), respectively.

The time-averaged radiated power density s(9), directive gain

d(9), and radiation resistance R are found from Eqs. (2.2-4),

,. and (2.2-7) where H(total) is given by Eq. (4.2-15) and I(z=O) = I( i=l*
Numerical evaluation of s(e), d(e), and R are implemented by means of

MITRE computer program "RICHMD2" written in FORTRAN language for use

on a DEC VAX 11/780 computer. A listing of program RICHMD2 is given

in Appendix B2.

A discussion of the results obtained by the method of moments, for

a sinusoidal current distribution on the element (N-1), is given in

Section 3.4.

Computer printouts of the directive gain and far-field radiation

pattern of the experimental monopole antennas discussed in Section 5

were obtained by the method of moments and are given in Appendix A2.
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The input impedance determined by the method of moments (N=4,

M-3ka) for a quarterwave element of radius b=10- 6 A and groundplane

radii 6 < ka < 30 wavenumbers is compared in table 7 of Section 4.5

with that obtained by the method of moments combined with the

geometric theory of diffraction (GTD). For ka > 14, Richmond's method

of moments is inaccurate. In addition to the large CPU time required

(greater than 30 minutes for ka > 14), convergent results are

difficult to obtain for ka > 14. It is most likely that the

usefulness of Richmond's method of moments could be extended to

significantly larger groundplane radii if a more efficient method of

matrix inversion, different from the Crout method employed by

Richmond, were utilized. When the element current distribution is not

assumed, Richmond's method of moments presently gives the best

available results for groundplane radii ka < 14 wavenumbers.

The lower limit of ka, for accurate results utilizing Richmond's

method of moments, has not been firmly established. For an element
N- segment number N > 1, we have obtained useful results for ka as small

as 0.25 wavenumbers but not for groundplanes of zero extent. For N=I,

accurate results were obtained (subject to the constraint of a

sinusoidal element current distribution) for groundplanes of zero

extent.

The radiation resistance of various diameter resonant (zero input

reactance) elements is compared in figure 17 of Section 4.5 with the

radiation resistance of an infinitely thin quarterwave element for

groundplane radii 0 < ka < 8.5 wavenumbers. For ka -0, the

radiation resistance of the resonant elements is appreciably

different from that of the infinitely thin quarterwave element because

an infinitely thin element on a groundplane of zero extent is resonant

for an element length equal to 0.5A and not 0.25A [see Eq. (32-38)].

The lengths and radiation resistances of various diameter resonant

elements, for groundplanes of radii 0.25 < ka < 7 wavenumbers, are

plotted in figures 18 and 19 of Section 4.5.
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4.3 Method of Moments Combined with Geometric Theory of Diffraction,

8.5 < ka <oo

The method of moments, when used to determine the current

distributions on both the element and the groundplane, can require

considerable computation time for large groundplane radii. For

example, Richmond's method of moments requires approximately one-half
hour of CPU time on the VAX 11/780 computer for a groundplane radius

ka=20 with N=4 element segments and M=60 groundplane annular zones

(see Section 4.2). Although it may be possible to reduce the

computation time by use of a more efficient program than the one

employed by Richmond, it is of interest to find an alternative method

for large groundplanes.

Awadalla and Maclean(  have reduced the computation time for

large groundplanes by combining the method of moments with the

geometric theory of diffraction (GTD). The element current

distribution is determined by the method of moments and the effect on

input impedance by groundplane edge diffraction is determined by GTD.

The antenna geometry is shown in figure 1 of Section 2.1. The

method of Awadalla and Maclean is described in [91 for determining the

input impedance and in [10] for determining the radiation pattern.

A fictitious magnetic edge current is defined and expressed in

terms of a GTD diffraction coefficient to account for diffraction by

the edge of the groundplane. The method of GTD is valid only for

sufficiently large groundplane radii. Unfortunately, this method, as

applied by Awadalla and Maclean, does not determine the groundplane

current distribution.
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The groundplane current distribution is idealized by Awadalla and

Maclean in determining the radiation pattern. The current

distribution on the top of the groundplane is assumed to be that for

an infinite groundplane but defined only over the finite extent of the

groundplane. The net current at the edge of the groundplane is set

equal to zero. This constraint satisfies the boundary condition given

by Eq. (2.4-4) and requires, at the edge of the groundplane, that the

current on the bottom of the groundplane be equal but in the opposite

direction to that on the top of the groundplane. The current

distribution on the bottom of the groundplane is then assumed to

decrease linearly from the edge of the groundplane to zero at the base

of the element.

.The method of moments employed by Awadalla and Maclean is not a

sinusoidal-Galerkin method. Consequently, one cannot impose a

sinusoidal current distribution on the element by setting the number

of element segments N-i as a test case for purposes of comparison with

other models.

A program listing was obtained from Prof. Awadalla and edited at The

MITRE Corporation. A listing of the edited program "AWADALLA" is

given in Appendix AS. Program AWADALLA is written in FORTRAN language

for use on a DEC VAX 11/780 computer. The CPU time for N-30 element

segments is less than 10 seconds.

Program AWADALLA was utilized to obtain the input impedance,

directive gain, and far-field elevation pattern of a quarterwave

element of radius b-10-6A on groundplane of radii 8 < ka < 50

wavenumbers. The results for input impedance are given in table 6.

These results are compared in table 7 of Section 4.5 with those

obtained by the method of moments (N-4). Concerning input impedance,

the method of moments combined with GTD gives useful results for

ka > 6, accurate results for ka > 8, and the suspected best available

results for 14 < ka <o0
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TABLE 6. INPUT IMPEDANCE OF A QUARTERWAVE ELEMENT OF RADIUS b=10-6X AT THE
CENTER OF A CIRCULAR GROUNDPLANE OF RADIUS 8 < ka < 50 WAVENUMBERS

(Method of moments combined with geometric theory of diffraction)

INPUT RESISTANCE INPUT REACTANCE
ka (OHMS) (OHMS)

8 35.96 18.28
9 36.55 24.45
10 41.45 21.82
11 37.54 18.67
12 36.30 23.08
13 40.49 22.51
14 38.44 19.17
15 36.36 22.18
16 39.72 22.82
17 38.99 19.70
18 36.58 21.51
19 39.09 22.89
20 36.87 21.05
22 38.58 22.84
23 39.45 20.63
24 37.20 20.73
25 38.17 22.67
26 39.48 21.06
27 37.55 20.56
28 37.87 22.46
29 39.41 21.40
30 37.88 20.47
31 37.67 22.19
32 39.27 21.68
33 38.19 20.49
34 37.55 21.93
35 39.08 21.90
36 38.45 20.56
37 37.51 21.65
38 38.87 22.06
39 38.66 20.68
40 37.54 21.42
41 38.64 22.13
42 38.82 20.86
43 37.62 21.21
44 38.43 22.14
45 38.92 21.05
46 37.75 21.04
47 38.23 22.10
48 38.96 21.26
49 37.91 20.93
50 38.06 21.99
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A sample computer printout of directive gain and the far-field

elevation pattern obtained by program AWADALLA for ka'20 is given in

Appendix A5. Unfortunately, the idealizations, made by Awadalla and

Maclean in characterizing the groundplane current distribution, yield

unrealistic peak directivities and elevation patterns. For example,

for ka-49, a peak directivity of 7.5 dBi was obtained. This result

for a thin quarterwave element seems unlikely because a thin

quarterwave element with a sinusoidal current distribution and mounted

on a groundplane of infinite extent has a peak directivity of only

5.2 dBi.

The method of moments combined with GTD via the definition of a

fictitious magnetic edge current has also been reported by Thiele and

Newhouse("I ) for computing input impedance and by Stutzman and

Thiele (28 ) for computing the far-field radiation pattern. In the

method of Stutzman and Thiele"2 ', the far-field pattern is determined

without idealizing the groundplane current distribution.

4.4 Method of Images, ka= oO

For the idealized case of a monopole element mounted on a

groundplane of infinite extent and of infinite conductivity, a

monopole antenna of length h may be modelled by the method of images

as a dipole of total length 2h but with one-half the input impedance

and double the peak numeric directivity of the dipole (see

Section 3.8). The infinite groundplane prevents radiation into the

hemisphere below the groundplane but generates fields in the upper

hemisphere identical to those of a dipole.

A detailed treatment of the fields and input impedance of a dipole

is given in [13]. An excellent summary of the present

state of the art of dipole theory, including plots of input impedance

as a function of dipole length and dipole radius, is given in [14].

101

%%,



4.5 Summary of Results

In Section 4, the current distribution on the element is

determined by the method of moments rather than being assumed as was

the case in Section 3. The determination of the element current

distribution is particularly important for element radii b > 10-4

The essential difference, in the two models utilized in

Section 4, is the treatment of the groundplane current distribution.

In Richmond's model, the groundplane current distribution is

determined by the method of moments. Useful results are obtained for

0 < ka < 14 wavenumbers. In the model of Awadalla and Maclean for

large but finite groundplanes, the input impedance is accurately

computed by the introduction of a fictitious magnetic edge current

determined by the Geometric Theory of Diffraction (GTD). However, in

that model the groundplane current distribution is not determined but

instead is idealized -- causing unrealistic peak directivities and

far-field radiation patterns.

The input impedances, determined by the method of moments and the

method of moments combined with GTD, are compared in table 7 for a

quarterwave element of radius b=10- 6 X and groundplane radii

6 < ka < 30 wavenumbers. The suspected best available results for

input impedance are obtained by the method of moments for 0 < ka < 8.5

and by the method of moments combined with GTD for 8.5 < ka < oo . The

method of moments combined with GTD is inaccurate for ka < 8

(approximately 6% error in input reactance for ka-8 and 7% error in

input resistance for ka-6). Richmond's method of moments is

.inaccurate for ka > 14 (approximately 11% error in input reactance and

5% error in input resistance for ka=15). Richmond's method of moments

would be useful for ka > 14 wavenumbers if a more efficient method

than the Crout method were employed for matrix inversion.
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The radiation resistance of various diameter resonant (zero input

reactance) elements is compared in figure 17 with the radiation

resistance of an infinitely thin quarterwave element for groundplane

radii 0 < ka < 8.5 wavenumbers. The radiation resistance of the

resonant elements is not too appreciably different from the

quarterwave element for ka > I wavenumber. However as ka ---o0, the

radiation resistances of the resonant elements become increasingly

different from that of the infinitely thin element because an

infinitely thin element on a groundplane of zero extent is resonant

for an element length equal to 0.5X and not 0.25X [see Eq. (3.2-38)].

The lengths and radiation resistance of various diameter resonant

elements for groundplane of radii 0.25 < ka < 7 wavenumbers are

plotted in figures 18 and 19. For these groundplane radii, the

element resonant length h res/ varies from approximately 0.22 to 0.34

wavelengths for element radii 10- 7 < b/A < 10- 2 wavelengths. The

resonant radiation resistance, for these groundplane and element

radii, varies from approximately 21 to 65 ohms.
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SECTION 5

COMPARISON WITH EXPERIMENTAL RESULTS

The input impedance and elevation patterns of several monopole

antennas were measured, each at a different frequency within the

frequency band 30-254 MHz, on the MITRE Corporation VHF antenna range.

Each antenna consisted of a tubular element of radius b=0.25 in.

mounted at the center of a groundplane of radius a=4 ft. and fed by a

50 ohm RG-214 coaxial cable with a type N panel connector and a 50 ohm

tapered adapter to the element. The length h of each element was

approximately a quarterwave. The exact length of each element length

was chosen to be resonant (input reactance = zero ohms) for a

groundplane of infinite extent. On a groundplane of finite extent,

the input reactance is expected to asymptotically approach zero as
ka--- 00 .

The VHF antenna range is located on the roof of MITRE E-Building.

The transmitting and receiving antennas are at a height 27 ft. above

the roof and are separated by approximately 40 ft. A conducting fence

16 ft. high and 48 ft. wide is located on the roof midway between the

transmitting and receiving antennas to minimize multipath reflections

from the roof. Lossy ferrite toroids (Ferronics, Type B material,

0.540 in. I. D. x 0.870 in 0. D. x 0.25 in.) are spaced along the

receiving and transmitting cables to minimize currents on the outside

of the cables. Outside rf interference is reduced to at least 40 dB

below the desired signal by the use of narrowband rf filters.
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The monopole test antenna was operated in the receiving mode to

obtain elevation patterns and on the same platform for input impedance

measurements. The monopole groundplane was supported by a 10 ft.

wooden vertical mast mounted on an antenna pedestal.

The input impedance was measured with a Hewlett-Packard HP-8754A

Network Analyzer with a computerized printout. The measurement test

set-up is shown in figure 20. The predicted input impedance of each

experimental monopole antenna was determined by Richmond's method of

moments utilizing program RICHMD1. The predicted and measured input

impedances are compared in Table 8. The measured input resistance

differs from predicted values by approximately 1-10% over a range of

normalized groundplane radii = 0.77 - 6.5 wavenumbers. The measured

input reactance differs by approximately 2-12 ohms from the predicted

values. Since some of the predicted values are near resonance, a

percentage comparison is not made for input reactance.
.4,.

Measured elevation patterns of most of the test monopole antennas

specified in Table 8 are compared in figures 21 - 29 with theoretical

patterns predicted by the method of moments (see Appendix A2 for the

computer printouts). Allowing for some multipath distortion by the

VHF test range, the received patterns are in good agreement with the
predicted pattern. It should be noted the measured pattern for ka

0.766 is not appreciably different from that predicted for the

monopole element itself. The effect of the groundplane on the shape

of the pattern is not readily apparent until ka > 2.0.
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